Proof of Theorem 29i

The theorem to be proved is
$[x=y \quad \vee \quad y-x \neq 0 \quad \vee \quad x-y \neq 0] \quad \rightarrow \quad[\mathrm{S} x=y \quad \vee \quad y-\mathrm{S} x \neq 0 \quad \vee \quad \mathrm{~S} x-y \neq 0]$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x)=(y) \quad \vee \quad \neg(y-x)=(0) \quad \vee \quad \neg(x-y)=(0)] \quad \& \quad[\neg(\mathrm{~S} x)=(y)]$ $\& \quad[(y-(\mathrm{S} x))=(0)] \quad \& \quad[((\mathrm{~S} x)-y)=(0)]]$

Special cases of the hypothesis and previous results:

$0: \quad y=x \quad \vee \quad \neg y-x=0 \quad \vee \quad \neg x-y=0 \quad$ from $\quad \mathrm{H}: x: y$
1: $\quad \neg \mathrm{S} x=y \quad$ from $\quad \mathrm{H}: x: y$
2: $\quad y-(\mathrm{S} x)=0 \quad$ from $\quad \mathrm{H}: x: y$
3: $\quad(\mathrm{S} x)-y=0 \quad$ from $\quad \mathrm{H}: x: y$
4: $\neg(\mathrm{S} x)-x=0 \quad$ from $\quad \underline{21} ; x$
5: $\quad y-x=0 \quad \vee \quad \mathrm{~S} x=y \quad \vee \quad \neg y-(\mathrm{S} x)=0 \quad$ from $\quad \underline{27} ; y ; x$
6: $\quad x-y=0 \quad \vee \neg(\mathrm{~S} x)-y=0 \quad$ from $\quad \underline{28} ; x ; y$

Equality substitutions:

7: $\neg y=x \quad \vee \quad \neg(\mathrm{~S} x)-y=0 \quad \vee \quad(\mathrm{~S} x)-x=0$

Inferences:

8: $\quad y-x=0 \quad \vee \quad \neg y-(\mathrm{S} x)=0 \quad$ by
1: $\neg \mathrm{S} x=y$
5: $y-x=0 \quad \vee \quad \mathrm{~S} x=y \quad \vee \quad \neg y-(\mathrm{S} x)=0$
9: $y-x=0 \quad$ by
2: $y-(\mathrm{S} x)=0$
8: $y-x=0 \quad \vee \quad \neg y-(\mathrm{S} x)=0$
10: $\quad x-y=0 \quad$ by
3: $(\mathrm{S} x)-y=0$
6: $x-y=0 \quad \vee \neg(\mathrm{~S} x)-y=0$

11: $\neg y=x \quad \vee \quad(\mathrm{~S} x)-x=0 \quad$ by
3: $(\mathrm{S} x)-y=0$
7: $\neg y=x \quad \vee \quad \neg(\mathrm{~S} x)-y=0 \quad \vee \quad(\mathrm{~S} x)-x=0$
12: $\quad \neg y=x \quad$ by
4: $\neg(\mathrm{S} x)-x=0$
11: $\neg y=x \quad \vee \quad(\mathrm{~S} x)-x=0$
13: $\quad y=x \quad \vee \quad \neg x-y=0 \quad$ by
9: $y-x=0$
0: $y=x \quad \vee \quad \neg y-x=0 \quad \vee \quad \neg x-y=0$
14: $y=x \quad$ by
10: $x-y=0$
13: $y=x \quad \vee \quad \neg x-y=0$
15: $Q E A$ by
12: $\neg y=x$
14: $y=x$

