Proof of Theorem 294

The theorem to be proved is x ends with $x \quad \& \quad x$ ends with $\epsilon \quad \& \quad x$ begins with $x \quad \& \quad x$ begins with ϵ

Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)$ ends with $(x) \quad \vee \neg(x)$ ends with $(\epsilon) \quad \vee \quad \neg(x)$ begins with $(x) \quad \vee \quad \neg(x)$ begins with $(\epsilon)]$]

Special cases of the hypothesis and previous results:

0: $\neg x$ ends with $x \vee \neg x$ ends with $\epsilon \vee \neg x$ begins with $x \vee \neg x$ begins with ϵ from $\mathrm{H}: x$

$$
\begin{array}{llll}
1: & \epsilon \oplus x=x & \text { from } & \underline{194} ; x \\
2: & x \oplus \epsilon=x & \text { from } & \underline{196 ; x} \\
3: & \epsilon \oplus x \text { ends with } x & \text { from } & \underline{289 ; ~} \epsilon ; x \\
4: & x \oplus \epsilon \text { ends with } \epsilon & \text { from } & \underline{289} ; x ; \epsilon \\
\text { 5: } & \epsilon \oplus x \text { begins with } \epsilon & \text { from } & \underline{291 ; ~} ; ; x \\
6: & x \oplus \epsilon \text { begins with } x & \text { from } & \underline{291 ; x ; \epsilon}
\end{array}
$$

Equality substitutions:

7: $\neg \epsilon \oplus x=x \quad \vee \neg \epsilon \oplus x$ ends with $x \quad \vee \quad x$ ends with x

8: $\neg \epsilon \oplus x=x \quad \vee \quad \neg \epsilon \oplus x$ begins with $\epsilon \vee \quad x$ begins with ϵ
9: $\neg x \oplus \epsilon=x \quad \vee \quad \neg x \oplus \epsilon$ ends with $\epsilon \vee \quad x$ ends with ϵ

10: $\neg x \oplus \epsilon=x \quad \vee \quad \neg x \oplus \epsilon$ begins with $x \quad \vee \quad x$ begins with x

Inferences:

11: $\neg \epsilon \oplus x$ ends with $x \vee x$ ends with $x \quad$ by
1: $\epsilon \oplus x=x$
7: $\neg \epsilon \oplus x=x \quad \vee \quad \neg \epsilon \oplus x$ ends with $x \quad \vee \quad x$ ends with x
12: $\neg \epsilon \oplus x$ begins with $\epsilon \vee x$ begins with $\epsilon \quad$ by
1: $\epsilon \oplus x=x$
8: $\neg \epsilon \oplus x=x \quad \vee \quad \neg \epsilon \oplus x$ begins with $\epsilon \quad \vee \quad x$ begins with ϵ

13: $\neg x \oplus \epsilon$ ends with $\epsilon \vee \quad x$ ends with $\epsilon \quad$ by
2: $x \oplus \epsilon=x$
9: $\neg x \oplus \epsilon=x \quad \vee \quad \neg x \oplus \epsilon$ ends with $\epsilon \quad \vee \quad x$ ends with ϵ
14: $\neg x \oplus \epsilon$ begins with $x \vee x$ begins with $x \quad$ by
2: $x \oplus \epsilon=x$
10: $\neg x \oplus \epsilon=x \quad \vee \quad \neg x \oplus \epsilon$ begins with $x \quad \vee \quad x$ begins with x
15: $\quad x$ ends with $x \quad$ by
3: $\epsilon \oplus x$ ends with x
11: $\neg \epsilon \oplus x$ ends with $x \quad \vee \quad x$ ends with x
16: $\quad x$ ends with $\epsilon \quad$ by
4: $x \oplus \epsilon$ ends with ϵ
13: $\neg x \oplus \epsilon$ ends with $\epsilon \vee \quad x$ ends with ϵ
17: $\quad x$ begins with $\epsilon \quad$ by
5: $\epsilon \oplus x$ begins with ϵ
12: $\neg \epsilon \oplus x$ begins with $\epsilon \vee x$ begins with ϵ
18: $\quad x$ begins with $x \quad$ by
6: $x \oplus \epsilon$ begins with x
14: $\neg x \oplus \epsilon$ begins with $x \vee x$ begins with x
19: $\neg x$ ends with $\epsilon \vee \neg x$ begins with $x \vee \neg x$ begins with $\epsilon \quad$ by
15: x ends with x
0: $\neg x$ ends with $x \vee \neg x$ ends with $\epsilon \vee \neg x$ begins with $x \quad \vee \quad \neg x$ begins with ϵ

20: $\neg x$ begins with $x \quad \vee \quad \neg x$ begins with $\epsilon \quad$ by
16: x ends with ϵ
19: $\neg x$ ends with $\epsilon \vee \neg x$ begins with $x \vee \neg x$ begins with ϵ
21: $\neg x$ begins with $x \quad$ by
17: x begins with ϵ
20: $\neg x$ begins with $x \vee \neg x$ begins with ϵ
22: $Q E A$ by
18: x begins with x
21: $\neg x$ begins with x

