Proof of Theorem 293

The theorem to be proved is

y ends with $c \rightarrow x \oplus y$ ends with c

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) [[(y) ends with (c)] & [$\neg (x \oplus y)$ ends with (c)]]

Special cases of the hypothesis and previous results:

- 0: y ends with c from H:y:c:x
- 1: $\neg x \oplus y$ ends with c from H:y:c:x
- 2: $\neg y \text{ ends with } c \lor a \oplus c = y$ from $288^{\Rightarrow};y;c:a$
- 3: $x \oplus (a \oplus c) = (x \oplus a) \oplus c$ from 183;x;a;c
- 4: $(x \oplus a) \oplus c$ ends with c from 289; $x \oplus a$;c

Equality substitutions:

5:
$$\neg a \oplus c = y \quad \lor \quad \neg x \oplus (a \oplus c) = (x \oplus a) \oplus c \quad \lor \quad x \oplus (y) = (x \oplus a) \oplus c$$

6:
$$\neg (x \oplus a) \oplus c = x \oplus y \quad \lor \quad \neg (x \oplus a) \oplus c \text{ ends with } c \quad \lor \quad x \oplus y \text{ ends with } c$$

Inferences:

- 7: $a \oplus c = y$ by
 - 0: y ends with c
 - 2: $\neg y \text{ ends with } c \lor a \oplus c = y$
- 8: $\neg (x \oplus a) \oplus c = x \oplus y \quad \lor \quad \neg (x \oplus a) \oplus c \text{ ends with } c$ by
 - 1: $\neg x \oplus y$ ends with c
 - 6: $\neg (x \oplus a) \oplus c = x \oplus y \quad \lor \quad \neg (x \oplus a) \oplus c \text{ ends with } c \quad \lor \quad x \oplus y \text{ ends with } c$
- 9: $\neg a \oplus c = y \lor (x \oplus a) \oplus c = x \oplus y$ by
 - 3: $x \oplus (a \oplus c) = (x \oplus a) \oplus c$
 - 5: $\neg a \oplus c = y \quad \lor \quad \neg x \oplus (a \oplus c) = (x \oplus a) \oplus c \quad \lor \quad (x \oplus a) \oplus c = x \oplus y$
- 10: $\neg (x \oplus a) \oplus c = x \oplus y$ by
 - 4: $(x \oplus a) \oplus c$ ends with c
 - 8: $\neg (x \oplus a) \oplus c = x \oplus y \quad \lor \quad \neg (x \oplus a) \oplus c \text{ ends with } c$

11:
$$(x \oplus a) \oplus c = x \oplus y$$
 by

7:
$$a \oplus c = y$$

9:
$$\neg a \oplus c = y \quad \lor \quad (x \oplus a) \oplus c = x \oplus y$$

12:
$$QEA$$
 by

10:
$$\neg (x \oplus a) \oplus c = x \oplus y$$

11:
$$(x \oplus a) \oplus c = x \oplus y$$