Proof of Theorem 292

The theorem to be proved is

x begins with $a \rightarrow x \oplus y$ begins with a

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[(x) \text{ begins with } (a)] \& [\neg (x \oplus y) \text{ begins with } (a)]]$

Special cases of the hypothesis and previous results:

- 0: x begins with a from H:x:a:y
- 1: $\neg x \oplus y$ begins with a from H:x:a:y
- 2: $\neg x$ begins with $a \lor a \oplus c = x$ from $290^{\Rightarrow};x;a:c$
- 3: $a \oplus (c \oplus y) = (a \oplus c) \oplus y$ from 183;a;c;y
- 4: $a \oplus (c \oplus y)$ begins with a from 291; $a;c \oplus y$

Equality substitutions:

5:
$$\neg a \oplus c = x \quad \lor \quad \neg a \oplus (c \oplus y) = (a \oplus c) \oplus y \quad \lor \quad a \oplus (c \oplus y) = (x) \oplus y$$

6:
$$\neg a \oplus (c \oplus y) = x \oplus y \quad \lor \quad \neg a \oplus (c \oplus y)$$
 begins with $a \quad \lor \quad x \oplus y$ begins with a

Inferences:

- 7: $a \oplus c = x$ by
 - 0: x begins with a
 - 2: $\neg x$ begins with $a \lor a \oplus c = x$
- 8: $\neg a \oplus (c \oplus y) = x \oplus y \quad \forall \quad \neg a \oplus (c \oplus y)$ begins with a by
 - 1: $\neg x \oplus y$ begins with a
 - 6: $\neg a \oplus (c \oplus y) = x \oplus y \quad \lor \quad \neg a \oplus (c \oplus y)$ begins with $a \quad \lor \quad x \oplus y$ begins with a
- 9: $\neg a \oplus c = x \lor a \oplus (c \oplus y) = x \oplus y$ by
 - 3: $a \oplus (c \oplus y) = (a \oplus c) \oplus y$
 - 5: $\neg a \oplus c = x \quad \lor \quad \neg a \oplus (c \oplus y) = (a \oplus c) \oplus y \quad \lor \quad a \oplus (c \oplus y) = x \oplus y$
- 10: $\neg a \oplus (c \oplus y) = x \oplus y$ by
 - 4: $a \oplus (c \oplus y)$ begins with a
 - 8: $\neg a \oplus (c \oplus y) = x \oplus y \quad \lor \quad \neg a \oplus (c \oplus y)$ begins with a

- 11: $a \oplus (c \oplus y) = x \oplus y$ by
 - 7: $a \oplus c = x$
 - 9: $\neg a \oplus c = x \quad \lor \quad a \oplus (c \oplus y) = x \oplus y$
- 12: QEA by
 - $10: \neg a \oplus (c \oplus y) = x \oplus y$
 - 11: $a \oplus (c \oplus y) = x \oplus y$