Proof of Theorem 291

The theorem to be proved is $a \oplus c$ begins with a

Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(a \oplus c)$ begins with $(a)]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg a \oplus c$ begins with $a \quad$ from $\mathrm{H}: a: c$
1: $\quad c \preceq a \oplus c \quad$ from $\quad \underline{277} ; a ; c$
2: $\quad a \oplus c$ begins with $a \vee \neg c \preceq a \oplus c \quad \vee \quad \neg a \oplus c=a \oplus c \quad$ from $\quad \underline{290}{ }^{\leftarrow} ; a \oplus c ; a ; c$
3: $\quad a \oplus c=a \oplus c \quad$ from $\quad \underline{5} ; a \oplus c$

Inferences:

4: $\neg c \preceq a \oplus c \quad \vee \quad \neg a \oplus c=a \oplus c \quad$ by
$0: \neg a \oplus c$ begins with a
2: $a \oplus c$ begins with $a \vee \neg c \preceq a \oplus c \quad \vee \quad \neg a \oplus c=a \oplus c$
5: $\quad \neg a \oplus c=a \oplus c \quad$ by
1: $c \preceq a \oplus c$
4: $\neg c \preceq a \oplus c \quad \vee \quad \neg a \oplus c=a \oplus c$
6: $Q E A$ by
3: $a \oplus c=a \oplus c$
5: $\neg a \oplus c=a \oplus c$

