Proof of Theorem 28i

The theorem to be proved is

 $\begin{bmatrix} x - y \neq 0 & \rightarrow & \mathbf{S}x - y \neq 0 \end{bmatrix} \quad \rightarrow \quad \begin{bmatrix} x - \mathbf{S}y \neq 0 & \rightarrow & \mathbf{S}x - \mathbf{S}y \neq 0 \end{bmatrix}$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[(x-y) = (0) \lor \neg ((Sx) - y) = (0)] \& [\neg (x - (Sy)) = (0)] \& [((Sx) - (Sy)) = (0)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg x - (Sy) = 0$$
 from H:x:y
1: $(Sx) - (Sy) = 0$ from H:x:y
2: $(Sx) - (Sy) = x - y$ from 18;x;y
3: $P(x - y) = x - (Sy)$ from 17;x;y
4: P0 = 0 from 16

Equality substitutions:

5:
$$\neg x - y = 0 \lor P(x - y) = 0 \lor \neg P(0) = 0$$

6: $\neg (Sx) - (Sy) = 0 \lor \neg (Sx) - (Sy) = x - y \lor 0 = x - y$
7: $\neg P(x - y) = x - (Sy) \lor \neg P(x - y) = 0 \lor x - (Sy) = 0$

Inferences:

8:
$$\neg P(x - y) = x - (Sy) \lor \neg P(x - y) = 0$$
 by
0: $\neg x - (Sy) = 0$
7: $\neg P(x - y) = x - (Sy) \lor \neg P(x - y) = 0 \lor x - (Sy) = 0$
9: $\neg (Sx) - (Sy) = x - y \lor x - y = 0$ by
1: $(Sx) - (Sy) = 0$
6: $\neg (Sx) - (Sy) = 0 \lor \neg (Sx) - (Sy) = x - y \lor x - y = 0$
10: $x - y = 0$ by
2: $(Sx) - (Sy) = x - y$

9:
$$\neg$$
 (Sx) - (Sy) = x - y \lor x - y = 0

11:
$$\neg P(x - y) = 0$$
 by
3: $P(x - y) = x - (Sy)$
8: $\neg P(x - y) = x - (Sy) \lor \neg P(x - y) = 0$
12: $\neg x - y = 0 \lor P(x - y) = 0$ by
4: $P0 = 0$
5: $\neg x - y = 0 \lor P(x - y) = 0 \lor \neg P0 = 0$

- 13: P(x y) = 0 by 10: x - y = 012: $\neg x - y = 0 \lor P(x - y) = 0$
- 14: QEA by 11: $\neg P(x - y) = 0$ 13: P(x - y) = 0