Proof of Theorem 28i

The theorem to be proved is
$[x-y \neq 0 \quad \rightarrow \quad \mathrm{~S} x-y \neq 0] \quad \rightarrow \quad[x-\mathrm{S} y \neq 0 \quad \rightarrow \quad \mathrm{~S} x-\mathrm{S} y \neq 0]$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x-y)=(0) \quad \vee \neg((\mathrm{S} x)-y)=(0)] \quad \& \quad[\neg(x-(\mathrm{S} y))=(0)] \quad \& \quad[((\mathrm{~S} x)-(\mathrm{S} y))=$ (0)]]

Special cases of the hypothesis and previous results:

0: $\quad \neg x-(\mathrm{S} y)=0 \quad$ from $\quad \mathrm{H}: x: y$
1: $(\mathrm{S} x)-(\mathrm{S} y)=0 \quad$ from $\quad \mathrm{H}: x: y$
2: $\quad(\mathrm{S} x)-(\mathrm{S} y)=x-y \quad$ from $\quad \underline{18} ; x ; y$
3: $\mathrm{P}(x-y)=x-(\mathrm{S} y) \quad$ from $\quad \underline{17} ; x ; y$
4: $\mathrm{P} 0=0 \quad$ from $\quad 16$

Equality substitutions:

5: $\neg x-y=0 \quad \vee \quad \mathrm{P}(x-y)=0 \quad \vee \quad \neg \mathrm{P}(0)=0$
6: $\neg(\mathrm{S} x)-(\mathrm{S} y)=0 \quad \vee \quad \neg(\mathrm{~S} x)-(\mathrm{S} y)=x-y \quad \vee \quad 0=x-y$

7: $\quad \neg \mathrm{P}(x-y)=x-(\mathrm{S} y) \quad \vee \quad \neg \mathrm{P}(x-y)=0 \quad \vee \quad x-(\mathrm{S} y)=0$

Inferences:

8: $\neg \mathrm{P}(x-y)=x-(\mathrm{S} y) \quad \vee \quad \neg \mathrm{P}(x-y)=0 \quad$ by
$0: \neg x-(\mathrm{S} y)=0$
7: $\neg \mathrm{P}(x-y)=x-(\mathrm{S} y) \quad \vee \quad \neg \mathrm{P}(x-y)=0 \quad \vee \quad x-(\mathrm{S} y)=0$
9: $\neg(\mathrm{S} x)-(\mathrm{S} y)=x-y \quad \vee \quad x-y=0 \quad$ by
1: $(\mathrm{S} x)-(\mathrm{S} y)=0$
6: $\neg(\mathrm{S} x)-(\mathrm{S} y)=0 \quad \vee \quad \neg(\mathrm{~S} x)-(\mathrm{S} y)=x-y \quad \vee \quad x-y=0$
10: $x-y=0 \quad$ by
2: $(\mathrm{S} x)-(\mathrm{S} y)=x-y$
9: $\neg(\mathrm{S} x)-(\mathrm{S} y)=x-y \quad \vee \quad x-y=0$

11: $\neg \mathrm{P}(x-y)=0 \quad$ by
3: $\mathrm{P}(x-y)=x-(\mathrm{S} y)$
8: $\neg \mathrm{P}(x-y)=x-(\mathrm{S} y) \quad \vee \quad \neg \mathrm{P}(x-y)=0$
12: $\neg x-y=0 \quad \vee \mathrm{P}(x-y)=0 \quad$ by
4: $\mathrm{P} 0=0$
5: $\neg x-y=0 \quad \vee \quad \mathrm{P}(x-y)=0 \quad \vee \quad \neg \mathrm{P} 0=0$
13: $\quad \mathrm{P}(x-y)=0 \quad$ by
10: $x-y=0$
12: $\neg x-y=0 \quad \vee \quad \mathrm{P}(x-y)=0$
14: $Q E A$ by
11: $\neg \mathrm{P}(x-y)=0$
13: $\mathrm{P}(x-y)=0$

