Proof of Theorem 28b

The theorem to be proved is
$x-0 \neq 0 \quad \rightarrow \quad \mathrm{~S} x-0 \neq 0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x-0)=(0)] \quad \& \quad[((\mathrm{~S} x)-0)=(0)]]$

Special cases of the hypothesis and previous results:

0: $\quad(\mathrm{S} x)-0=0 \quad$ from $\quad \mathrm{H}: x$
1: $(\mathrm{S} x)-0=\mathrm{S} x \quad$ from $\quad 17 ; \mathrm{S} x$
2: $\neg \mathrm{S} x=0 \quad$ from $\quad \underline{3} ; x$

Equality substitutions:

3: $\neg(\mathrm{S} x)-0=0 \quad \vee \neg(\mathrm{~S} x)-0=\mathrm{S} x \quad \vee \quad 0=\mathrm{S} x$

Inferences:

4: $\neg(\mathrm{S} x)-0=\mathrm{S} x \quad \vee \quad \mathrm{~S} x=0 \quad$ by
0: $(\mathrm{S} x)-0=0$
3: $\neg(\mathrm{S} x)-0=0 \quad \vee \neg(\mathrm{~S} x)-0=\mathrm{S} x \quad \vee \quad \mathrm{~S} x=0$
5: $\quad \mathrm{S} x=0 \quad$ by
1: $(\mathrm{S} x)-0=\mathrm{S} x$
4: $\neg(\mathrm{S} x)-0=\mathrm{S} x \quad \vee \mathrm{~S} x=0$
6: $Q E A$ by
2: $\neg \mathrm{S} x=0$
5: $\mathrm{S} x=0$

