Proof of Theorem 289

The theorem to be proved is

 $a \oplus c$ ends with c

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (a \oplus c) \text{ ends with } (c)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg a \oplus c$$
 ends with c from H: $a:c$

- 1: $a \leq a \oplus c$ from <u>277</u>;a;c
- 3: $a \oplus c = a \oplus c$ from <u>5</u>; $a \oplus c$

Inferences:

- 4: $\neg a \preceq a \oplus c \quad \lor \quad \neg a \oplus c = a \oplus c \quad \text{by}$ 0: $\neg a \oplus c \text{ ends with } c$ 2: $a \oplus c \text{ ends with } c \quad \lor \quad \neg a \preceq a \oplus c \quad \lor \quad \neg a \oplus c = a \oplus c$
- 5: $\neg a \oplus c = a \oplus c$ by 1: $a \preceq a \oplus c$ 4: $\neg a \preceq a \oplus c$ \lor $\neg a \oplus c = a \oplus c$
- 6: QEA by 3: $a \oplus c = a \oplus c$
 - 5: $\neg a \oplus c = a \oplus c$