Proof of Theorem 278

The theorem to be proved is

Length $\underline{0} = 1$ & Length $\underline{1} = 1$

Suppose the theorem does not hold. Then, with the variables held fixed, (H) $[[\neg (\text{Length}\underline{0}) = (1) \lor \neg (\text{Length}\underline{1}) = (1)]]$

Special cases of the hypothesis and previous results:

0: $\neg \text{Length}\underline{0} = 1 \lor \neg \text{Length}\underline{1} = 1$ from H

1: Length $\epsilon = 0$ from <u>259</u>; ϵ

2: Length $(\epsilon \oplus \underline{0}) = S(\text{Length}\epsilon)$ from <u>259</u>; ϵ

3: Length $(\epsilon \oplus \underline{1}) = S(\text{Length}\epsilon)$ from $\underline{259};\epsilon$

4: $\epsilon \oplus \underline{0} = \underline{0}$ from $\underline{194;0}$

- 5: $\epsilon \oplus \underline{1} = \underline{1}$ from $\underline{194;1}$
- 6: S0 = 1 from <u>115</u>

Equality substitutions:

7:
$$\neg \text{Length}\epsilon = 0 \lor \text{S}(\text{Length}\epsilon) = 1 \lor \neg \text{S}(0) = 1$$

8: $\neg \epsilon \oplus \underline{0} = \underline{0} \lor \neg \text{Length}(\epsilon \oplus \underline{0}) = \text{S}(\text{Length}\epsilon) \lor \text{Length}(\underline{0}) = \text{S}(\text{Length}\epsilon)$
9: $\neg \epsilon \oplus \underline{1} = \underline{1} \lor \neg \text{Length}(\epsilon \oplus \underline{1}) = \text{S}(\text{Length}\epsilon) \lor \text{Length}(\underline{1}) = \text{S}(\text{Length}\epsilon)$
10: $\neg \text{S}(\text{Length}\epsilon) = \text{Length}\underline{0} \lor \neg \text{S}(\text{Length}\epsilon) = 1 \lor \text{Length}\underline{0} = 1$
11: $\neg \text{S}(\text{Length}\epsilon) = \text{Length}\underline{1} \lor \neg \text{S}(\text{Length}\epsilon) = 1 \lor \text{Length}\underline{1} = 1$

Inferences:

12:
$$S(\text{Length}\epsilon) = 1 \lor \neg S0 = 1$$
 by
1: $\text{Length}\epsilon = 0$
7: $\neg \text{Length}\epsilon = 0 \lor S(\text{Length}\epsilon) = 1 \lor \neg S0 = 1$
13: $\neg \epsilon \oplus \underline{0} = \underline{0} \lor S(\text{Length}\epsilon) = \text{Length}\underline{0}$ by
2: $\text{Length}(\epsilon \oplus \underline{0}) = S(\text{Length}\epsilon)$

8: $\neg \epsilon \oplus \underline{0} = \underline{0} \lor \neg \text{Length}(\epsilon \oplus \underline{0}) = S(\text{Length}\epsilon) \lor S(\text{Length}\epsilon) = \text{Length}\underline{0}$

- 14: $\neg \epsilon \oplus \underline{1} = \underline{1} \lor S(\text{Length}\epsilon) = \text{Length}\underline{1}$ by 3: $\text{Length}(\epsilon \oplus \underline{1}) = S(\text{Length}\epsilon)$ 9: $\neg \epsilon \oplus \underline{1} = \underline{1} \lor \neg \text{Length}(\epsilon \oplus \underline{1}) = S(\text{Length}\epsilon) \lor S(\text{Length}\epsilon) = \text{Length}\underline{1}$
- 15: $S(\text{Length}\epsilon) = \text{Length}\underline{0}$ by 4: $\epsilon \oplus \underline{0} = \underline{0}$ 13: $\neg \epsilon \oplus \underline{0} = \underline{0} \lor S(\text{Length}\epsilon) = \text{Length}\underline{0}$
- 16: $S(\text{Length}\epsilon) = \text{Length}\underline{1}$ by 5: $\epsilon \oplus \underline{1} = \underline{1}$ 14: $\neg \epsilon \oplus \underline{1} = \underline{1} \lor S(\text{Length}\epsilon) = \text{Length}\underline{1}$
- 17: $S(\text{Length}\epsilon) = 1$ by 6: S0 = 112: $S(\text{Length}\epsilon) = 1 \lor \neg S0 = 1$
- 18: $\neg S(\text{Length}\epsilon) = 1 \lor \text{Length}\underline{0} = 1$ by 15: $S(\text{Length}\epsilon) = \text{Length}\underline{0}$ 10: $\neg S(\text{Length}\epsilon) = \text{Length}\underline{0} \lor \neg S(\text{Length}\epsilon) = 1 \lor \text{Length}\underline{0} = 1$
- 20: Length $\underline{0} = 1$ by 17: S(Length ϵ) = 1 18: \neg S(Length ϵ) = 1 \lor Length $\underline{0} = 1$
- 21: Length $\underline{1} = 1$ by 17: S(Length ϵ) = 1 19: \neg S(Length ϵ) = 1 \lor Length $\underline{1} = 1$
- 22: $\neg \text{Length}\underline{1} = 1$ by 20: Length $\underline{0} = 1$ 0: $\neg \text{Length}\underline{0} = 1 \lor \neg \text{Length}\underline{1} = 1$
- 23: QEA by 21: Length $\underline{1} = 1$ 22: \neg Length $\underline{1} = 1$