Proof of Theorem 277

The theorem to be proved is
$x \preceq x \oplus y \quad \& \quad y \preceq x \oplus y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x) \preceq(x \oplus y) \quad \vee \quad \neg(y) \preceq(x \oplus y)]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg x \preceq x \oplus y \quad \vee \quad \neg y \preceq x \oplus y \quad$ from $\quad \mathrm{H}: x: y$
1: $x \preceq x \oplus y \quad \vee \quad \neg$ Length $x \leq$ Length $(x \oplus y) \quad$ from $\quad \underline{264}{ }^{\leftarrow} ; x ; x \oplus y$
2: $\quad y \preceq x \oplus y \quad \vee \quad \neg$ Length $y \leq \operatorname{Length}(x \oplus y) \quad$ from $\quad \underline{264}^{\leftarrow} ; y ; x \oplus y$
3: $\quad($ Length $x)+($ Length $y)=\operatorname{Length}(x \oplus y) \quad$ from $\quad \underline{260 ;} ; x ; y$
4: Length $x \leq($ Length $x)+($ Length $y) \quad$ from $\quad \underline{71 ; L e n g t h} x ;$ Length y
5: $\quad($ Length $y)+($ Length $x)=($ Length $x)+($ Length $y) \quad$ from \quad 98;Length $x ;$ Length y
6: Length $y \leq($ Length $y)+($ Length $x) \quad$ from $\quad \underline{71} ;$ Length $y ;$ Length x
Equality substitutions:

7: $\neg($ Length $x)+($ Length $y)=\operatorname{Length}(x \oplus y) \quad \vee \quad \neg \operatorname{Length} x \leq($ Length $x)+($ Length $y)$ \checkmark Length $x \leq$ Length $(x \oplus y)$

8: $\neg($ Length $x)+($ Length $y)=\operatorname{Length}(x \oplus y) \quad \vee \quad \neg($ Length $y)+($ Length $x)=$ $($ Length $x)+($ Length $y) \vee($ Length $y)+($ Length $x)=\operatorname{Length}(x \oplus y)$

9: $\neg($ Length $y)+($ Length $x)=$ Length $(x \oplus y) \quad \vee \neg$ Length $y \leq($ Length $y)+($ Length $x)$
\checkmark Length $y \leq$ Length $(x \oplus y)$

Inferences:

10: \neg Length $x \leq($ Length $x)+($ Length $y) \quad \vee \quad$ Length $x \leq \operatorname{Length}(x \oplus y) \quad$ by
3: $($ Length $x)+($ Length $y)=\operatorname{Length}(x \oplus y)$
$7: \neg($ Length $x)+($ Length $y)=$ Length $(x \oplus y) \vee \neg$ Length $x \leq($ Length $x)+($ Length $y)$
\vee Length $x \leq$ Length $(x \oplus y)$
11: $\neg($ Length $y)+($ Length $x)=($ Length $x)+($ Length $y) \quad \vee \quad($ Length $y)+($ Length $x)=$ Length $(x \oplus y) \quad$ by

3: $($ Length $x)+($ Length $y)=$ Length $(x \oplus y)$
8: $\neg($ Length $x)+($ Length $y)=$ Length $(x \oplus y) \quad \vee \quad \neg($ Length $y)+($ Length $x)=$ $($ Length $x)+($ Length $y) \vee($ Length $y)+($ Length $x)=\operatorname{Length}(x \oplus y)$

12: Length $x \leq \operatorname{Length}(x \oplus y) \quad$ by
4: Length $x \leq($ Length $x)+$ (Length $y)$
10: \neg Length $x \leq($ Length $x)+($ Length $y) \quad \vee \quad$ Length $x \leq \operatorname{Length}(x \oplus y)$
13: $\quad($ Length $y)+($ Length $x)=\operatorname{Length}(x \oplus y) \quad$ by
5: $($ Length $y)+($ Length $x)=($ Length $x)+($ Length $y)$
11: $\neg($ Length $y)+($ Length $x)=($ Length $x)+($ Length $y) \vee($ Length $y)+($ Length $x)=$
Length $(x \oplus y)$
14: $\neg($ Length $y)+($ Length $x)=\operatorname{Length}(x \oplus y) \quad \vee \quad$ Length $y \leq \operatorname{Length}(x \oplus y) \quad$ by
6: Length $y \leq($ Length $y)+($ Length $x)$
9: $\neg($ Length $y)+($ Length $x)=$ Length $(x \oplus y) \quad \vee \neg$ Length $y \leq($ Length $y)+($ Length $x)$
\vee Length $y \leq$ Length $(x \oplus y)$
15: $x \preceq x \oplus y \quad$ by
12: Length $x \leq$ Length $(x \oplus y)$
1: $x \preceq x \oplus y \quad \vee \quad \neg$ Length $x \leq$ Length $(x \oplus y)$
16: Length $y \leq$ Length $(x \oplus y) \quad$ by
13: $($ Length $y)+($ Length $x)=$ Length $(x \oplus y)$
14: $\neg($ Length $y)+($ Length $x)=\operatorname{Length}(x \oplus y) \quad \vee \quad$ Length $y \leq \operatorname{Length}(x \oplus y)$
17: $\neg y \preceq x \oplus y \quad$ by
15: $x \preceq x \oplus y$
$0: \neg x \preceq x \oplus y \quad \vee \quad \neg y \preceq x \oplus y$
18: $\quad y \preceq x \oplus y \quad$ by
16: Length $y \leq$ Length $(x \oplus y)$
2: $y \preceq x \oplus y \quad \vee \quad \neg$ Length $y \leq \operatorname{Length}(x \oplus y)$
19: $Q E A$ by
17: $\neg y \preceq x \oplus y$
18: $y \preceq x \oplus y$

