Proof of Theorem 276

The theorem to be proved is
$x \oplus y \preceq y \oplus x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x \oplus y) \preceq(y \oplus x)]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg x \oplus y \preceq y \oplus x \quad$ from $\quad \mathrm{H}: x: y$
1: $\quad($ Length $x)+($ Length $y)=\operatorname{Length}(x \oplus y) \quad$ from $\quad \underline{260 ;} ; x ; y$
2: $\quad($ Length $y)+(\operatorname{Length} x)=\operatorname{Length}(y \oplus x) \quad$ from $\quad \underline{260 ; y ; x}$
3: $\quad($ Length $y)+($ Length $x)=($ Length $x)+($ Length $y) \quad$ from \quad 98;Length $x ;$ Length y
4: $\quad($ Length $x)+($ Length $y) \leq($ Length $x)+($ Length $y) \quad$ from \quad 60;Length $x)+($ Length y
5: $\quad x \oplus y \preceq y \oplus x \quad \vee \quad \neg \operatorname{Length}(x \oplus y) \leq \operatorname{Length}(y \oplus x) \quad$ from $\quad \underline{264}{ }^{\leftarrow} ; x \oplus y ; y \oplus x$

Equality substitutions:

6: $\neg($ Length $x)+($ Length $y)=$ Length $(x \oplus y) \quad \vee \quad \neg($ Length $y)+($ Length $x)=$ $($ Length $x)+($ Length $y) \vee($ Length $y)+($ Length $x)=\operatorname{Length}(x \oplus y)$

7: $\neg($ Length $x)+($ Length $y)=\operatorname{Length}(x \oplus y) \quad \vee \quad \neg($ Length $x)+($ Length $y) \leq$ $($ Length $x)+($ Length $y) \vee \operatorname{Length}(x \oplus y) \leq \operatorname{Length}(x \oplus y)$

8: $\neg($ Length $y)+($ Length $x)=$ Length $(y \oplus x) \quad \vee \quad \neg($ Length $y)+($ Length $x)=$ $\operatorname{Length}(x \oplus y) \quad \vee \quad$ Length $(y \oplus x)=\operatorname{Length}(x \oplus y)$

9: $\neg \operatorname{Length}(y \oplus x)=\operatorname{Length}(x \oplus y) \quad \vee \quad \operatorname{Length}(x \oplus y) \leq \operatorname{Length}(y \oplus x) \quad \vee$ \neg Length $(x \oplus y) \leq$ Length $(x \oplus y)$

Inferences:

10: $\quad \neg \operatorname{Length}(x \oplus y) \leq \operatorname{Length}(y \oplus x) \quad$ by
0: $\neg x \oplus y \preceq y \oplus x$
5: $x \oplus y \preceq y \oplus x \quad \vee \quad \neg \operatorname{Length}(x \oplus y) \leq \operatorname{Length}(y \oplus x)$
11: $\neg($ Length $y)+($ Length $x)=($ Length $x)+($ Length $y) \quad \vee \quad($ Length $y)+($ Length $x)=$ Length $(x \oplus y) \quad$ by

1: $($ Length $x)+($ Length $y)=$ Length $(x \oplus y)$
6: $\neg($ Length $x)+($ Length $y)=\operatorname{Length}(x \oplus y) \quad \vee \quad \neg($ Length $y)+($ Length $x)=$ $($ Length $x)+($ Length $y) \vee($ Length $y)+($ Length $x)=\operatorname{Length}(x \oplus y)$

12: $\neg($ Length $x)+($ Length $y) \leq($ Length $x)+($ Length $y) \vee \operatorname{Length}(x \oplus y) \leq \operatorname{Length}(x \oplus y)$ by

1: $($ Length $x)+($ Length $y)=\operatorname{Length}(x \oplus y)$
$7: \neg($ Length $x)+($ Length $y)=$ Length $(x \oplus y) \quad \vee \quad \neg($ Length $x)+($ Length $y) \leq$ $($ Length $x)+($ Length $y) \quad \vee \quad$ Length $(x \oplus y) \leq \operatorname{Length}(x \oplus y)$

13: $\neg(\operatorname{Length} y)+(\operatorname{Length} x)=\operatorname{Length}(x \oplus y) \quad \vee \quad \operatorname{Length}(y \oplus x)=\operatorname{Length}(x \oplus y)$ by

2: $($ Length $y)+($ Length $x)=$ Length $(y \oplus x)$
8: $\neg($ Length $y)+($ Length $x)=\operatorname{Length}(y \oplus x) \quad \vee \quad \neg($ Length $y)+($ Length $x)=$
Length $(x \oplus y) \quad \vee \quad$ Length $(y \oplus x)=\operatorname{Length}(x \oplus y)$
14: $\quad($ Length $y)+($ Length $x)=\operatorname{Length}(x \oplus y) \quad$ by
3: $($ Length $y)+($ Length $x)=($ Length $x)+($ Length $y)$
11: $\neg($ Length $y)+($ Length $x)=($ Length $x)+($ Length $y) \vee($ Length $y)+($ Length $x)=$ Length $(x \oplus y)$

15: Length $(x \oplus y) \leq \operatorname{Length}(x \oplus y) \quad$ by
4: $($ Length $x)+($ Length $y) \leq($ Length $x)+($ Length $y)$
12: $\neg($ Length $x)+($ Length $y) \leq($ Length $x)+($ Length $y) \quad \vee \quad \operatorname{Length}(x \oplus y) \leq$ Length $(x \oplus y)$

16: $\quad \neg \operatorname{Length}(y \oplus x)=\operatorname{Length}(x \oplus y) \quad \vee \quad \neg \operatorname{Length}(x \oplus y) \leq \operatorname{Length}(x \oplus y) \quad$ by
10: $\neg \operatorname{Length}(x \oplus y) \leq \operatorname{Length}(y \oplus x)$
9: $\neg \operatorname{Length}(y \oplus x)=\operatorname{Length}(x \oplus y) \quad \vee \quad$ Length $(x \oplus y) \leq \operatorname{Length}(y \oplus x)$
$\vee \neg \operatorname{Length}(x \oplus y) \leq \operatorname{Length}(x \oplus y)$
17: Length $(y \oplus x)=\operatorname{Length}(x \oplus y) \quad$ by
14: $($ Length $y)+($ Length $x)=$ Length $(x \oplus y)$
13: $\neg($ Length $y)+($ Length $x)=\operatorname{Length}(x \oplus y) \quad \vee \quad$ Length $(y \oplus x)=\operatorname{Length}(x \oplus y)$
18: $\quad \neg \operatorname{Length}(y \oplus x)=\operatorname{Length}(x \oplus y) \quad$ by
15: Length $(x \oplus y) \leq$ Length $(x \oplus y)$
16: $\neg \operatorname{Length}(y \oplus x)=\operatorname{Length}(x \oplus y) \quad \vee \quad \neg \operatorname{Length}(x \oplus y) \leq \operatorname{Length}(x \oplus y)$
19: $Q E A$ by
17: Length $(y \oplus x)=\operatorname{Length}(x \oplus y)$

18: $\neg \operatorname{Length}(y \oplus x)=\operatorname{Length}(x \oplus y)$

