Proof of Theorem 275

The theorem to be proved is

 $x \preceq y \quad \& \quad y \preceq z \quad \rightarrow \quad x \preceq z$

Suppose the theorem does not hold. Then, with the variables held fixed,

 $(\mathrm{H}) \quad [[(x) \preceq (y)] \quad \& \quad [(y) \preceq (z)] \quad \& \quad [\neg \ (x) \preceq (z)]] \\$

Special cases of the hypothesis and previous results:

0: $x \leq y$ from H:x:y:z 1: $y \leq z$ from H:x:y:z 2: $\neg x \leq z$ from H:x:y:z 3: $\neg x \leq y$ \lor Length $x \leq$ Lengthy from 264 \rightarrow ;x;y 4: $\neg y \leq z$ \lor Length $y \leq$ Lengthz from 264 \rightarrow ;y;z 5: \neg Length $x \leq$ Lengthy \lor \neg Length $z \leq$ Lengthz \lor Length $x \leq$ Lengthz from 73;Lengthx;Lengthy;Lengthz

6: $x \leq z \quad \lor \quad \neg \text{ Length} x \leq \text{Length} z \quad \text{from} \quad \underline{264} \leftarrow ;x;z$

Inferences:

7: Length $x \leq$ Lengthyby 0: $x \prec y$ 3: $\neg x \leq y \lor$ Length $x \leq$ Lengthy8: Length $y \leq$ Lengthzby 1: $y \leq z$ 4: $\neg y \leq z \lor$ Length $y \leq$ Lengthz9: $\neg \text{Length} x \leq \text{Length} z$ by 2: $\neg x \prec z$ 6: $x \leq z \quad \lor \quad \neg \text{Length} x \leq \text{Length} z$ 10: $\neg \text{Length}y \leq \text{Length}z \lor \text{Length}x \leq \text{Length}z$ by 7: Length $x \leq$ Lengthy5: $\neg \text{Length}x \leq \text{Length}y \lor \neg \text{Length}y \leq \text{Length}z \lor \text{Length}x \leq \text{Length}z$ 11: Length $x \leq$ Lengthzby 8: Length $y \leq$ Lengthz10: $\neg \text{Length} y \leq \text{Length} z \quad \lor \quad \text{Length} x \leq \text{Length} z$

12: QEA by

9: $\neg \text{Length} x \leq \text{Length} z$

11: Length $x \leq$ Lengthz