Proof of Theorem 275

The theorem to be proved is
$x \preceq y \quad \& \quad y \preceq z \quad \rightarrow \quad x \preceq z$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x) \preceq(y)] \quad \& \quad[(y) \preceq(z)] \quad \& \quad[\neg(x) \preceq(z)]]$

Special cases of the hypothesis and previous results:

0: $x \preceq y \quad$ from $\quad \mathrm{H}: x: y: z$
1: $y \preceq z$ from $\mathrm{H}: x: y: z$
2: $\neg x \preceq z \quad$ from $\mathrm{H}: x: y: z$
3: $\neg x \preceq y \quad \vee \quad$ Length $x \leq$ Length $y \quad$ from $\quad \underline{264}^{\rightarrow} ; x ; y$
4: $\neg y \preceq z \vee$ Length $y \leq$ Length $z \quad$ from $\quad \underline{264}^{\rightarrow} ; y ; z$
5: \neg Length $x \leq$ Lengthy $\vee \neg$ Length $y \leq$ Length $z \vee$ Length $x \leq$ Length z from 73; Length x;Length $y ;$ Length z
6: $x \preceq z \vee \neg$ Length $x \leq$ Length $z \quad$ from $\quad \underline{264}{ }^{\leftarrow} ; x ; z$

Inferences:

7: Length $x \leq$ Length y by
$0: x \preceq y$
3: $\neg x \preceq y \quad \vee \quad$ Length $x \leq$ Length y
8: Length $y \leq$ Length $z \quad$ by
1: $y \preceq z$
4: $\neg y \preceq z \vee$ Length $y \leq$ Length z
9: \neg Length $x \leq$ Length $z \quad$ by
$2: \neg x \preceq z$
6: $x \preceq z \vee \neg$ Length $x \leq$ Length z
10: \neg Length $y \leq$ Length $z \vee$ Length $x \leq$ Length $z \quad$ by
7: Length $x \leq$ Length y
5: \neg Length $x \leq$ Length $\vee \vee \neg$ Length $y \leq$ Length $z \vee$ Length $x \leq$ Length z
11: Length $x \leq$ Length $z \quad$ by
8: Lengthy \leq Lengthz
10: \neg Length $y \leq$ Length $z \vee$ Length $x \leq$ Length z

12: $Q E A \quad$ by
9: \neg Length $x \leq$ Length z
11: Length $x \leq$ Length z

