Proof of Theorem 274

The theorem to be proved is
$\epsilon \preceq x \quad \& \quad x \preceq x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\epsilon) \preceq(x) \quad \vee \quad \neg(x) \preceq(x)]]$

Special cases of the hypothesis and previous results:

0: $\neg \epsilon \preceq x \quad \vee \quad \neg x \preceq x \quad$ from $\quad \mathrm{H}: x$
1: $\epsilon \preceq x \vee \neg$ Length $\epsilon \leq$ Length $x \quad$ from $\quad \underline{264}{ }^{\leftarrow} ; \epsilon ; x$
2: $x \preceq x \vee \neg$ Length $x \leq$ Length $x \quad$ from $\quad \underline{264}^{\leftarrow} ; x ; x$
3: Length $\epsilon=0 \quad$ from $\quad \underline{259}$
4: $0 \leq$ Length $x \quad$ from \quad 58; Length x
5: Length $x \leq$ Length $x \quad$ from \quad 60;Length x

Equality substitutions:

6: \neg Length $\epsilon=0 \vee$ Length $\epsilon \leq$ Length $x \quad \vee \neg 0 \leq$ Length x

Inferences:

7: Length $\epsilon \leq$ Length $x \quad \vee \neg 0 \leq$ Length $x \quad$ by
3: Length $\epsilon=0$
6: \neg Length $\epsilon=0 \quad \vee \quad$ Length $\epsilon \leq$ Length $x \quad \vee \quad \neg 0 \leq$ Length x
8: Length $\epsilon \leq$ Length x by
4: $0 \leq$ Length x
7: Length $\epsilon \leq$ Length $x \vee \neg 0 \leq$ Length x
9: $x \preceq x \quad$ by
5: Length $x \leq$ Length x
2: $x \preceq x \quad \vee \quad \neg$ Length $x \leq$ Length x
10: $\epsilon \preceq x \quad$ by
8: Length $\epsilon \leq$ Length x
1: $\epsilon \preceq x \quad \vee \quad \neg$ Length $\epsilon \leq$ Length x

11: $\neg \epsilon \preceq x \quad$ by
9: $x \preceq x$
$0: \neg \epsilon \preceq x \quad \vee \quad \neg x \preceq x$
12: $Q E A \quad$ by
10: $\epsilon \preceq x$
11: $\neg \epsilon \preceq x$

