Proof of Theorem 274

The theorem to be proved is

 $\epsilon \preceq x \quad \& \quad x \preceq x$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (\epsilon) \preceq (x) \lor \neg (x) \preceq (x)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg \epsilon \preceq x \lor \neg x \preceq x$$
 from H:x
1: $\epsilon \preceq x \lor \neg \text{Length}\epsilon \leq \text{Length}x$ from $264^{<-};\epsilon;x$
2: $x \preceq x \lor \neg \text{Length}x \leq \text{Length}x$ from $264^{<-};x;x$
3: Length $\epsilon = 0$ from 259
4: $0 \leq \text{Length}x$ from $58;\text{Length}x$
5: Length $x \leq \text{Length}x$ from $60;\text{Length}x$

Equality substitutions:

6: $\neg \text{Length}\epsilon = 0 \lor \text{Length}\epsilon \leq \text{Length}x \lor \neg 0 \leq \text{Length}x$

Inferences:

- 7: Length $\epsilon \leq \text{Length} x \lor \neg 0 \leq \text{Length} x$ by 3: Length $\epsilon = 0$ 6: $\neg \text{Length} \epsilon = 0 \lor \text{Length} \epsilon \leq \text{Length} x \lor \neg 0 \leq \text{Length} x$
- 8: Length $\epsilon \leq$ Lengthx by 4: $0 \leq$ Lengthx7: Length $\epsilon \leq$ Length $x \lor \neg 0 \leq$ Lengthx
- 9: $x \preceq x$ by 5: Length $x \leq$ Lengthx2: $x \preceq x \lor \neg$ Length $x \leq$ Lengthx

10: $\epsilon \leq x$ by 8: Length $\epsilon \leq$ Lengthx1: $\epsilon \leq x \lor \neg$ Length $\epsilon \leq$ Lengthx

- 11: $\neg \epsilon \preceq x$ by 9: $x \preceq x$ 0: $\neg \epsilon \preceq x \lor \neg x \preceq x$
- 12: QEA by 10: $\epsilon \leq x$ 11: $\neg \epsilon \leq x$