Proof of Theorem 273

The theorem to be proved is
$x \prec y \quad \rightarrow \quad x<y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x) \prec(y)] \quad \& \quad[\neg(x)<(y)]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{lll}
0: & x \prec y \quad \text { from } \quad \mathrm{H}: x: y \\
1: & \neg x<y \quad \text { from } \quad \mathrm{H}: x: y \\
2: & \neg x \prec y \quad \vee \quad \text { Length } x<\text { Length } y \quad \text { from } \quad \underline{265} \rightarrow & ; x ; y \\
3: & \neg \operatorname{Length} x<\operatorname{Length} y \quad \vee \quad 2 \uparrow(\operatorname{Length} x)<2 \uparrow(\text { Length } y) \quad \text { from } \quad \underline{145 ; \text { Length } x ; \text { Length } y} \\
4: & 2 \uparrow(\text { Length } x)=\mathrm{Q} x \quad \text { from } \quad \underline{261 ; x} \\
5: & 2 \uparrow(\text { Length } y)=\mathrm{Q} y \quad \text { from } \quad \underline{261} ; y \\
6: & \neg y \leq x \quad \vee \quad \mathrm{Q} y \leq \mathrm{Q} x \quad \text { from } \underline{272 ; y ; x} \\
7: & \neg \mathrm{Q} x<\mathrm{Q} y \quad \vee \quad \neg \mathrm{Q} y \leq \mathrm{Q} x \quad \text { from } \quad \underline{80} ; \mathrm{Q} x ; \mathrm{Q} y \\
8: & y \leq x \quad \vee \quad x<y \quad \text { from } \quad \underline{79 ; y ; x}
\end{array}
$$

Equality substitutions:

9: $\quad \neg 2 \uparrow($ Length $x)=\mathrm{Q} x \quad \vee \neg 2 \uparrow($ Length $x)<2 \uparrow($ Length $y) \vee \quad \mathrm{Q} x<2 \uparrow($ Length $y)$
10: $\neg 2 \uparrow($ Length $y)=\mathrm{Q} y \quad \vee \quad \neg \mathrm{Q} x<2 \uparrow($ Length $y) \quad \vee \quad \mathrm{Q} x<\mathrm{Q} y$

Inferences:

11: Length $x<$ Length y by
0: $x \prec y$
2: $\neg x \prec y \vee$ Length $x<$ Length y
12: $y \leq x \quad$ by
1: $\neg x<y$
8: $y \leq x \quad \vee \quad x<y$

13: $\neg 2 \uparrow($ Length $x)<2 \uparrow$ (Length $y) \quad \vee \quad \mathrm{Q} x<2 \uparrow$ (Length $y) \quad$ by
4: $2 \uparrow($ Length $x)=\mathrm{Q} x$
9: $\neg 2 \uparrow($ Length $x)=\mathrm{Q} x \vee \neg 2 \uparrow($ Length $x)<2 \uparrow($ Length $y) \quad \vee \quad \mathrm{Q} x<2 \uparrow($ Length $y)$
14: $\neg \mathrm{Q} x<2 \uparrow$ (Length y) $\vee \quad \mathrm{Q} x<\mathrm{Q} y \quad$ by
5: $2 \uparrow($ Length $y)=\mathrm{Q} y$
10: $\neg 2 \uparrow$ (Lengthy) $=\mathrm{Q} y \vee \neg \mathrm{Q} x<2 \uparrow$ (Length $y) \quad \vee \quad \mathrm{Q} x<\mathrm{Q} y$
15: $\quad 2 \uparrow($ Length $x)<2 \uparrow($ Length $y) \quad$ by
11: Length $x<$ Length y
3: \neg Length $x<$ Length $y \vee 2 \uparrow($ Length $x)<2 \uparrow($ Length $y)$
16: $\quad \mathrm{Q} y \leq \mathrm{Q} x \quad$ by
12: $y \leq x$
6: $\neg y \leq x \quad \vee \quad \mathrm{Q} y \leq \mathrm{Q} x$
17: $\mathrm{Q} x<2 \uparrow$ (Lengthy) by
15: $2 \uparrow$ (Length $x)<2 \uparrow$ (Length y)
13: $\neg 2 \uparrow($ Length $x)<2 \uparrow$ (Lengthy) $\vee \mathrm{Q} x<2 \uparrow$ (Length $y)$
18: $\neg \mathrm{Q} x<\mathrm{Q} y \quad$ by
16: $\mathrm{Q} y \leq \mathrm{Q} x$
7: $\neg \mathrm{Q} x<\mathrm{Q} y \quad \vee \quad \neg \mathrm{Q} y \leq \mathrm{Q} x$
19: $\mathrm{Q} x<\mathrm{Q} y \quad$ by
17: $\mathrm{Q} x<2 \uparrow$ (Lengthy)
14: $\neg \mathrm{Q} x<2 \uparrow$ (Length $y) ~ \vee \mathrm{Q} x<\mathrm{Q} y$
20: $Q E A$ by
18: $\neg \mathrm{Q} x<\mathrm{Q} y$
19: $\mathrm{Q} x<\mathrm{Q} y$

