Proof of Theorem 272b

The theorem to be proved is
$x \leq 0 \quad \rightarrow \quad \mathrm{Q} x \leq \mathrm{Q} 0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x) \leq(0)] \quad \& \quad[\neg(\mathrm{Q} x) \leq(\mathrm{Q} 0)]]$

Special cases of the hypothesis and previous results:

0: $x \leq 0 \quad$ from $\mathrm{H}: x$
1: $\neg \mathrm{Q} x \leq \mathrm{Q} 0 \quad$ from $\mathrm{H}: x$
2: $\neg x \leq 0 \quad \vee \quad 0=x \quad$ from $\quad \underline{77} ; x$
3: $\mathrm{Q} 0 \leq \mathrm{Q} 0 \quad$ from $60 ; \mathrm{Q} 0$
Equality substitutions:

4: $\neg x=0 \vee \mathrm{Q}(x) \leq \mathrm{Q} 0 \vee \neg \mathrm{Q}(0) \leq \mathrm{Q} 0$

Inferences:

5: $\quad 0=x \quad$ by
0 : $x \leq 0$
2: $\neg x \leq 0 \quad \vee \quad 0=x$
6: $\quad \neg 0=x \quad \vee \quad \neg \mathrm{Q} 0 \leq \mathrm{Q} 0 \quad$ by
1: $\neg \mathrm{Q} x \leq \mathrm{Q} 0$
4: $\neg 0=x \quad \vee \quad \mathrm{Q} x \leq \mathrm{Q} 0 \quad \vee \quad \neg \mathrm{Q} 0 \leq \mathrm{Q} 0$
7: $\quad \neg 0=x \quad$ by
3: $\mathrm{Q} 0 \leq \mathrm{Q} 0$
6: $\neg 0=x \quad \vee \quad \neg \mathrm{Q} 0 \leq \mathrm{Q} 0$
8: $Q E A$ by
5: $0=x$
7: $\neg 0=x$

