Proof of Theorem 27

The theorem to be proved is

$$y - x \neq 0 \rightarrow Sx = y \lor y - Sx \neq 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[\neg (y-x) = (0)]$$
 & $[\neg (Sx) = (y)]$ & $[(y-(Sx)) = (0)]$

Special cases of the hypothesis and previous results:

0:
$$\neg y - x = 0$$
 from H:y:x

1:
$$\neg Sx = y$$
 from H:y:x

2:
$$y - (Sx) = 0$$
 from H:y:x

3:
$$y - x = 0 \quad \forall \quad \neg y - (Sx) = 0 \quad \forall \quad y - x = S0$$
 from 26; y; x

4:
$$\neg y - x = S0 \lor Sx = y$$
 from $24;y;x$

Inferences:

5:
$$\neg y - (Sx) = 0 \lor y - x = S0$$
 by

$$0: \neg y - x = 0$$

3:
$$y - x = 0 \quad \lor \quad \neg y - (Sx) = 0 \quad \lor \quad y - x = S0$$

6:
$$\neg y - x = S0$$
 by

1:
$$\neg Sx = y$$

4:
$$\neg y - x = S0 \lor Sx = y$$

7:
$$y - x = S0$$
 by

2:
$$y - (Sx) = 0$$

5:
$$\neg y - (Sx) = 0 \lor y - x = S0$$

8:
$$QEA$$
 by

6:
$$\neg y - x = S0$$

7:
$$y - x = S0$$