Proof of Theorem 269

The theorem to be proved is

q is a power of two \rightarrow 0 < q

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[(q) \text{ is a power of two}] \& [\neg (0) < (q)]]$

Special cases of the hypothesis and previous results:

- 0: q is a power of two from H:q
- 1: $\neg 0 < q$ from H:q
- 2: $\neg 0$ is a power of two from $\underline{134}$
- 3: $0 \le q$ from $\underline{58};q$
- 4: $0 < q \lor \neg 0 \le q \lor 0 = q$ from $56^{<-};0;q$

Equality substitutions:

5: $\neg 0 = q \lor 0$ is a power of two $\lor \neg q$ is a power of two

Inferences:

- 6: $\neg 0 = q \lor 0$ is a power of two by
 - 0: q is a power of two
 - 5: $\neg 0 = q \lor 0$ is a power of two $\lor \neg q$ is a power of two
- 7: $\neg 0 \le q \lor 0 = q$ by
 - 1: $\neg 0 < q$
 - 4: $0 < q \quad \lor \quad \neg \ 0 \le q \quad \lor \quad 0 = q$
- 8: $\neg 0 = q$ by
 - 2: $\neg 0$ is a power of two
 - 6: $\neg 0 = q \lor 0$ is a power of two
- 9: 0 = q by
 - 3: $0 \le q$
 - 7: $\neg 0 \leq q \quad \lor \quad 0 = q$
- 10: QEA by
 - 8: $\neg 0 = q$
 - 9: 0 = q