Proof of Theorem 268

The theorem to be proved is
$\mathrm{SR} x<\mathrm{Q} x \quad \rightarrow \quad \mathrm{QS} x=\mathrm{Q} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(\mathrm{S}(\mathrm{R} x))<(\mathrm{Q} x)] \quad \& \quad[\neg(\mathrm{Q}(\mathrm{S} x))=(\mathrm{Q} x)]]$

Special cases of the hypothesis and previous results:

0: $\quad \mathrm{S}(\mathrm{R} x)<\mathrm{Q} x \quad$ from $\quad \mathrm{H}: x$
1: $\neg \mathrm{Q}(\mathrm{S} x)=\mathrm{Q} x \quad$ from $\quad \mathrm{H}: x$
2: $\quad(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad$ from $\quad \underline{166} ; x$
3: $\mathrm{Q} x$ is a power of two from $166 ; x$
4: $\quad \mathrm{S}((\mathrm{Q} x)+(\mathrm{R} x))=(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x)) \quad$ from $\quad \underline{12} ; \mathrm{Q} x ; \mathrm{R} x$
5: $\neg(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x) \quad \vee \quad \neg \mathrm{Q} x$ is a power of two $\vee \neg \mathrm{S}(\mathrm{R} x)<\mathrm{Q} x$ $\vee \quad \mathrm{Q}(\mathrm{S} x)=\mathrm{Q} x \quad$ from $\quad 171 ; \mathrm{S} x ; \mathrm{Q} x ; \mathrm{S}(\mathrm{R} x)$

Equality substitutions:

6: $\neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad \vee \quad \neg \mathrm{~S}((\mathrm{Q} x)+(\mathrm{R} x))=(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x)) \quad \vee \quad \mathrm{S}(\mathrm{S} x)=$ $(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))$

Inferences:

7: $\quad \neg(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x) \quad \vee \neg \mathrm{Q} x$ is a power of two $\quad \vee \mathrm{Q}(\mathrm{S} x)=\mathrm{Q} x \quad$ by 0: $\mathrm{S}(\mathrm{R} x)<\mathrm{Q} x$
5: $\neg(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x) \quad \vee \neg \mathrm{Q} x$ is a power of two $\quad \vee \neg \mathrm{S}(\mathrm{R} x)<\mathrm{Q} x$
$\vee \quad \mathrm{Q}(\mathrm{S} x)=\mathrm{Q} x$
8: $\neg(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x) \vee \neg \mathrm{Q} x$ is a power of two by
1: $\neg \mathrm{Q}(\mathrm{S} x)=\mathrm{Q} x$
7: $\neg(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x) \vee \neg \mathrm{Q} x$ is a power of two $\vee \mathrm{Q}(\mathrm{S} x)=\mathrm{Q} x$
9: $\neg \mathrm{S}((\mathrm{Q} x)+(\mathrm{R} x))=(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x)) \quad \vee(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x) \quad$ by
2: $(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x$
6: $\neg(\mathrm{Q} x)+(\mathrm{R} x)=\mathrm{S} x \quad \vee \neg \mathrm{~S}((\mathrm{Q} x)+(\mathrm{R} x))=(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x)) \vee(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=$ S(Sx)

10: $\quad \neg(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x) \quad$ by
3: $\mathrm{Q} x$ is a power of two
8: $\neg(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x) \quad \vee \quad \neg \mathrm{Q} x$ is a power of two
11: $\quad(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x) \quad$ by
4: $\mathrm{S}((\mathrm{Q} x)+(\mathrm{R} x))=(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))$
9: $\neg \mathrm{S}((\mathrm{Q} x)+(\mathrm{R} x))=(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x)) \quad \vee \quad(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x)$
12: $Q E A \quad$ by
10: $\neg(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x)$
11: $(\mathrm{Q} x)+(\mathrm{S}(\mathrm{R} x))=\mathrm{S}(\mathrm{S} x)$

