Proof of Theorem 268

The theorem to be proved is

$$SRx < Qx \rightarrow QSx = Qx$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(S(Rx)) < (Qx)]$$
 & $[\neg (Q(Sx)) = (Qx)]]$

Special cases of the hypothesis and previous results:

0:
$$S(Rx) < Qx$$
 from H:x

1:
$$\neg Q(Sx) = Qx$$
 from H:x

2:
$$(Qx) + (Rx) = Sx$$
 from 166; x

3: Qx is a power of two from
$$166$$
;x

4:
$$S((Qx) + (Rx)) = (Qx) + (S(Rx))$$
 from $\underline{12}; Qx; Rx$

5:
$$\neg (Qx) + (S(Rx)) = S(Sx) \lor \neg Qx$$
 is a power of two $\lor \neg S(Rx) < Qx$ $\lor Q(Sx) = Qx$ from 171;Sx;Qx;S(Rx)

Equality substitutions:

6:
$$\neg (Qx) + (Rx) = Sx \lor \neg S((Qx) + (Rx)) = (Qx) + (S(Rx)) \lor S(Sx) = (Qx) + (S(Rx))$$

Inferences:

7:
$$\neg (Qx) + (S(Rx)) = S(Sx) \lor \neg Qx$$
 is a power of two $\lor Q(Sx) = Qx$ by 0: $S(Rx) < Qx$

5:
$$\neg (Qx) + (S(Rx)) = S(Sx) \lor \neg Qx$$
 is a power of two $\lor \neg S(Rx) < Qx$ $\lor Q(Sx) = Qx$

8:
$$\neg (Qx) + (S(Rx)) = S(Sx) \lor \neg Qx$$
 is a power of two by

1:
$$\neg Q(Sx) = Qx$$

7:
$$\neg (Qx) + (S(Rx)) = S(Sx) \lor \neg Qx$$
 is a power of two $\lor Q(Sx) = Qx$

9:
$$\neg S((Qx) + (Rx)) = (Qx) + (S(Rx)) \lor (Qx) + (S(Rx)) = S(Sx)$$
 by

$$2: (Qx) + (Rx) = Sx$$

6:
$$\neg (Qx) + (Rx) = Sx \lor \neg S((Qx) + (Rx)) = (Qx) + (S(Rx)) \lor (Qx) + (S(Rx)) = S(Sx)$$

10:
$$\neg (Qx) + (S(Rx)) = S(Sx)$$
 by

3: Qx is a power of two

8:
$$\neg (Qx) + (S(Rx)) = S(Sx) \lor \neg Qx$$
 is a power of two

11:
$$(Qx) + (S(Rx)) = S(Sx)$$
 by

4:
$$S((Qx) + (Rx)) = (Qx) + (S(Rx))$$

9:
$$\neg S((Qx) + (Rx)) = (Qx) + (S(Rx)) \lor (Qx) + (S(Rx)) = S(Sx)$$

12:
$$QEA$$
 by

10:
$$\neg (Qx) + (S(Rx)) = S(Sx)$$

11:
$$(Qx) + (S(Rx)) = S(Sx)$$