## Proof of Theorem 267

The theorem to be proved is
$x \preceq y \quad \rightarrow \quad x \leq 2 \cdot \mathrm{Q} y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x) \preceq(y)] \quad \& \quad[\neg(x) \leq(2 \cdot(\mathrm{Q} y))]]$

## Special cases of the hypothesis and previous results:

$$
\begin{aligned}
& 0: \quad x \preceq y \quad \text { from } \quad \mathrm{H}: x: y \\
& \text { 1: } \neg x \leq 2 \cdot(\mathrm{Q} y) \quad \text { from } \quad \mathrm{H}: x: y \\
& \text { 2: } \neg x \preceq y \vee \text { Length } x \leq \text { Length } y \quad \text { from } \quad \underline{264}^{>} ; x ; y \\
& \text { 3: } \neg \text { Length } x \leq \text { Length } y \vee 2 \uparrow(\text { Length } x) \leq 2 \uparrow(\text { Length } y) \quad \text { from } \quad 263 ; \text { Length } x \text {; Length } y \\
& \text { 4: } \quad 2 \uparrow(\text { Length } x)=\mathrm{Q} x \quad \text { from } \quad \underline{261} ; x \\
& \text { 5: } \quad 2 \uparrow(\text { Length } y)=\mathrm{Q} y \quad \text { from } \quad \underline{261} ; y \\
& \text { 6: } \quad \mathrm{S} x<2 \cdot(\mathrm{Q} x) \quad \text { from } 158 ; x \\
& \text { 7: } x \leq \mathrm{S} x \quad \text { from } \underline{63} ; x \\
& \text { 8: } \neg \mathrm{S} x<2 \cdot(\mathrm{Q} x) \vee \mathrm{S} x \leq 2 \cdot(\mathrm{Q} x) \quad \text { from } \quad \underline{56} \rightarrow \text {; } x x ; 2 \cdot(\mathrm{Q} x) \\
& \text { 9: } \neg x \leq \mathrm{S} x \quad \vee \neg \mathrm{~S} x \leq 2 \cdot(\mathrm{Q} x) \quad \vee \quad x \leq 2 \cdot(\mathrm{Q} x) \quad \text { from } \quad \underline{73} ; x ; \mathrm{S} x ; 2 \cdot(\mathrm{Q} x) \\
& \text { 10: } \neg \mathrm{Q} x \leq \mathrm{Q} y \vee 2 \cdot(\mathrm{Q} x) \leq 2 \cdot(\mathrm{Q} y) \quad \text { from } \quad \underline{266} ; \mathrm{Q} x ; \mathrm{Q} y \\
& \text { 11: } \quad \neg x \leq 2 \cdot(\mathrm{Q} x) \vee \neg 2 \cdot(\mathrm{Q} x) \leq 2 \cdot(\mathrm{Q} y) \quad \vee x \leq 2 \cdot(\mathrm{Q} y) \quad \text { from } \quad \underline{73} ; x ; 2 \cdot(\mathrm{Q} x) ; 2 \cdot(\mathrm{Q} y)
\end{aligned}
$$

## Equality substitutions:

12: $\neg 2 \uparrow($ Length $x)=\mathrm{Q} x \quad \vee \quad \neg 2 \uparrow($ Length $x) \leq 2 \uparrow($ Length $y) \quad \vee \quad \mathrm{Q} x \leq 2 \uparrow($ Length $y)$
13: $\neg 2 \uparrow($ Length $y)=\mathrm{Q} y \quad \vee \neg \mathrm{Q} x \leq 2 \uparrow($ Length $y) \quad \vee \quad \mathrm{Q} x \leq \mathrm{Q} y$

## Inferences:

14: Length $x \leq$ Length $y$ by
$0: x \preceq y$
2: $\neg x \preceq y \quad \vee$ Length $x \leq$ Length $y$

15: $\quad \neg x \leq 2 \cdot(\mathrm{Q} x) \quad \vee \quad \neg 2 \cdot(\mathrm{Q} x) \leq 2 \cdot(\mathrm{Q} y) \quad$ by
1: $\neg x \leq 2 \cdot(\mathrm{Q} y)$
11: $\neg x \leq 2 \cdot(\mathrm{Q} x) \vee \neg 2 \cdot(\mathrm{Q} x) \leq 2 \cdot(\mathrm{Q} y) \vee \quad x \leq 2 \cdot(\mathrm{Q} y)$
16: $\neg 2 \uparrow($ Length $x) \leq 2 \uparrow($ Length $y) \quad \vee \quad \mathrm{Q} x \leq 2 \uparrow($ Length $y) \quad$ by
4: $2 \uparrow($ Length $x)=\mathrm{Q} x$
12: $\neg 2 \uparrow($ Length $x)=\mathrm{Q} x \quad \vee \neg 2 \uparrow($ Length $x) \leq 2 \uparrow($ Length $y) \vee \mathrm{Q} x \leq 2 \uparrow$ (Length $y)$
17: $\neg \mathrm{Q} x \leq 2 \uparrow$ (Length $y) ~ \vee \quad \mathrm{Q} x \leq \mathrm{Q} y \quad$ by
5: $2 \uparrow($ Length $y)=\mathrm{Q} y$
13: $\neg 2 \uparrow($ Length $y)=\mathrm{Q} y \quad \vee \neg \mathrm{Q} x \leq 2 \uparrow$ (Length $y) \quad \vee \quad \mathrm{Q} x \leq \mathrm{Q} y$
18: $\quad \mathrm{S} x \leq 2 \cdot(\mathrm{Q} x) \quad$ by
6: $\mathrm{S} x<2 \cdot(\mathrm{Q} x)$
8: $\neg \mathrm{S} x<2 \cdot(\mathrm{Q} x) \vee \mathrm{S} x \leq 2 \cdot(\mathrm{Q} x)$
19: $\neg \mathrm{S} x \leq 2 \cdot(\mathrm{Q} x) \quad \vee \quad x \leq 2 \cdot(\mathrm{Q} x) \quad$ by
7: $x \leq \mathrm{S} x$
9: $\neg x \leq \mathrm{S} x \quad \vee \quad \neg \mathrm{~S} x \leq 2 \cdot(\mathrm{Q} x) \quad \vee \quad x \leq 2 \cdot(\mathrm{Q} x)$
20: $2 \uparrow($ Length $x) \leq 2 \uparrow($ Length $y) \quad$ by
14: Length $x \leq$ Length $y$
3: $\neg$ Length $x \leq$ Length $y \vee 2 \uparrow($ Length $x) \leq 2 \uparrow($ Length $y)$
21: $\quad x \leq 2 \cdot(\mathrm{Q} x) \quad$ by
18: $\mathrm{S} x \leq 2 \cdot(\mathrm{Q} x)$
19: $\neg \mathrm{S} x \leq 2 \cdot(\mathrm{Q} x) \vee \quad x \leq 2 \cdot(\mathrm{Q} x)$
22: $\quad \mathrm{Q} x \leq 2 \uparrow$ (Length $y) \quad$ by
20: $2 \uparrow($ Length $x) \leq 2 \uparrow$ (Length $y)$
16: $\neg 2 \uparrow($ Length $x) \leq 2 \uparrow($ Length $y) \quad \vee \quad \mathrm{Q} x \leq 2 \uparrow$ (Length $y)$
23: $\quad \neg 2 \cdot(\mathrm{Q} x) \leq 2 \cdot(\mathrm{Q} y) \quad$ by
21: $x \leq 2 \cdot(\mathrm{Q} x)$
15: $\neg x \leq 2 \cdot(\mathrm{Q} x) \quad \vee \neg 2 \cdot(\mathrm{Q} x) \leq 2 \cdot(\mathrm{Q} y)$
24: $\quad \mathrm{Q} x \leq \mathrm{Q} y \quad$ by
22: $\mathrm{Q} x \leq 2 \uparrow$ (Lengthy)
17: $\neg \mathrm{Q} x \leq 2 \uparrow$ (Lengthy) $\vee \mathrm{Q} x \leq \mathrm{Q} y$
25: $\neg \mathrm{Q} x \leq \mathrm{Q} y$ by
23: $\neg 2 \cdot(\mathrm{Q} x) \leq 2 \cdot(\mathrm{Q} y)$
10: $\neg \mathrm{Q} x \leq \mathrm{Q} y \quad \vee \quad 2 \cdot(\mathrm{Q} x) \leq 2 \cdot(\mathrm{Q} y)$

26: $Q E A$ by
24: $\mathrm{Q} x \leq \mathrm{Q} y$
25: $\neg \mathrm{Q} x \leq \mathrm{Q} y$

