Proof of Theorem 263b

The theorem to be proved is
$x \leq 0 \quad \rightarrow \quad 2 \uparrow x \leq 2 \uparrow 0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x) \leq(0)] \quad \& \quad[\neg(2 \uparrow x) \leq(2 \uparrow 0)]]$

Special cases of the hypothesis and previous results:
$0: x \leq 0 \quad$ from $\mathrm{H}: x$
1: $\neg 2 \uparrow x \leq 2 \uparrow 0 \quad$ from $\mathrm{H}: x$
2: $\neg x \leq 0 \quad \vee \quad 0=x \quad$ from $\quad 57 ; x$
3: $2 \uparrow 0 \leq 2 \uparrow 0 \quad$ from $\quad \underline{60} ; 2 \uparrow 0$
Equality substitutions:

4: $\neg x=0 \vee 2 \uparrow(x) \leq 2 \uparrow 0 \vee \neg 2 \uparrow(0) \leq 2 \uparrow 0$

Inferences:

5: $0=x \quad$ by
0 : $x \leq 0$
2: $\neg x \leq 0 \quad \vee \quad 0=x$
6: $\quad \neg 0=x \quad \vee \quad \neg 2 \uparrow 0 \leq 2 \uparrow 0 \quad$ by
1: $\neg 2 \uparrow x \leq 2 \uparrow 0$
4: $\neg 0=x \quad \vee \quad 2 \uparrow x \leq 2 \uparrow 0 \quad \vee \quad \neg 2 \uparrow 0 \leq 2 \uparrow 0$
7: $\quad \neg 0=x \quad$ by
$3: 2 \uparrow 0 \leq 2 \uparrow 0$
6: $\neg 0=x \quad \vee \quad \neg 2 \uparrow 0 \leq 2 \uparrow 0$
8: $Q E A$ by
5: $0=x$
7: $\neg 0=x$

