Proof of Theorem 261b

The theorem to be proved is
$\mathrm{Q} \epsilon=2 \uparrow($ Length $\epsilon)$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\mathrm{Q} \epsilon)=(2 \uparrow($ Length $\epsilon))]]$

Special cases of the hypothesis and previous results:

$0: \quad \neg 2 \uparrow($ Length $\epsilon)=\mathrm{Q} \epsilon \quad$ from $\quad \mathrm{H}$
1: Length $\epsilon=0 \quad$ from $\underline{259}$
2: $\quad 2 \uparrow 0=1 \quad$ from $\quad \underline{126} ; 2$
3: $\mathrm{Q} \epsilon=1 \quad$ from $\quad \underline{189}$
Equality substitutions:

4: \neg Length $\epsilon=0 \vee 2 \uparrow($ Length $\epsilon)=\mathrm{Q} \epsilon \quad \vee \quad \neg 2 \uparrow(0)=\mathrm{Q} \epsilon$
5: $\quad \neg 2 \uparrow 0=1 \quad \vee \quad 2 \uparrow 0=\mathrm{Q} \epsilon \quad \vee \quad \neg 1=\mathrm{Q} \epsilon$

Inferences:

6: \neg Length $\epsilon=0 \quad \vee \neg 2 \uparrow 0=\mathrm{Q} \epsilon \quad$ by
$0: \neg 2 \uparrow($ Length $\epsilon)=\mathrm{Q} \epsilon$
4: \neg Length $\epsilon=0 \quad \vee 2 \uparrow($ Length $\epsilon)=\mathrm{Q} \epsilon \quad \vee \neg 2 \uparrow 0=\mathrm{Q} \epsilon$
7: $\quad \neg 2 \uparrow 0=\mathrm{Q} \epsilon \quad$ by
1: Length $\epsilon=0$
6: \neg Length $\epsilon=0 \vee \neg 2 \uparrow 0=\mathrm{Q} \epsilon$
8: $\quad 2 \uparrow 0=\mathrm{Q} \epsilon \quad \vee \quad \neg \mathrm{Q} \epsilon=1 \quad$ by
2: $2 \uparrow 0=1$
$5: \neg 2 \uparrow 0=1 \quad \vee \quad 2 \uparrow 0=\mathrm{Q} \epsilon \quad \vee \quad \neg \mathrm{Q} \epsilon=1$
9: $\quad 2 \uparrow 0=\mathrm{Q} \epsilon \quad$ by
3: $\mathrm{Q} \epsilon=1$
$8: 2 \uparrow 0=\mathrm{Q} \epsilon \quad \vee \quad \neg \mathrm{Q} \epsilon=1$
10: $Q E A$ by
7: $\neg 2 \uparrow 0=\mathrm{Q} \epsilon$
9: $2 \uparrow 0=\mathrm{Q} \epsilon$

