Proof of Theorem 261b

The theorem to be proved is

$$Q\epsilon = 2 \uparrow (\text{Length }\epsilon)$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (Q\epsilon) = (2 \uparrow (Length\epsilon))]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg 2 \uparrow (\text{Length}\epsilon) = Q\epsilon$$
 from H

1: Length
$$\epsilon = 0$$
 from 259

2:
$$2 \uparrow 0 = 1$$
 from 126;2

3:
$$Q\epsilon = 1$$
 from 189

Equality substitutions:

4:
$$\neg \text{Length}\epsilon = 0 \quad \lor \quad 2 \uparrow (\text{Length}\epsilon) = Q\epsilon \quad \lor \quad \neg 2 \uparrow (0) = Q\epsilon$$

5:
$$\neg 2 \uparrow 0 = 1 \lor 2 \uparrow 0 = Q \epsilon \lor \neg 1 = Q \epsilon$$

Inferences:

6:
$$\neg \text{Length} \epsilon = 0 \quad \lor \quad \neg \ 2 \uparrow 0 = Q \epsilon \quad \text{by}$$

0:
$$\neg 2 \uparrow (\text{Length}\epsilon) = Q\epsilon$$

4:
$$\neg \text{Length}\epsilon = 0 \quad \lor \quad 2 \uparrow (\text{Length}\epsilon) = Q\epsilon \quad \lor \quad \neg 2 \uparrow 0 = Q\epsilon$$

7:
$$\neg 2 \uparrow 0 = Q\epsilon$$
 by

1: Length
$$\epsilon = 0$$

6:
$$\neg \text{Length} \epsilon = 0 \quad \lor \quad \neg \ 2 \uparrow 0 = Q \epsilon$$

8:
$$2 \uparrow 0 = Q\epsilon \quad \lor \quad \neg Q\epsilon = 1$$
 by

$$2: 2 \uparrow 0 = 1$$

5:
$$\neg 2 \uparrow 0 = 1 \quad \lor \quad 2 \uparrow 0 = Q \epsilon \quad \lor \quad \neg Q \epsilon = 1$$

9:
$$2 \uparrow 0 = Q\epsilon$$
 by

3:
$$Q\epsilon = 1$$

8:
$$2 \uparrow 0 = Q\epsilon \quad \lor \quad \neg Q\epsilon = 1$$

10:
$$QEA$$
 by

7:
$$\neg 2 \uparrow 0 = Q\epsilon$$

9:
$$2 \uparrow 0 = Q\epsilon$$