Proof of Theorem 260ij

The theorem to be proved is
Length $(x \oplus y)=$ Length $x+$ Length $y \quad \rightarrow \quad$ Length $(x \oplus(y \oplus \underline{0}))=$ Length $x+\operatorname{Length}(y \oplus \underline{0})$ $\& \operatorname{Length}(x \oplus(y \oplus \underline{1}))=\operatorname{Length} x+\operatorname{Length}(y \oplus \underline{1})$

Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[((\operatorname{Length}(x \oplus y))=(($ Length $x)+($ Length $y))] \quad \& \quad[\neg(\operatorname{Length}(x \oplus(y \oplus \underline{0})))=$ $((\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))) \vee \neg(\operatorname{Length}(x \oplus(y \oplus \underline{1})))=((\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1})))]]$

Special cases of the hypothesis and previous results:

$$
\begin{aligned}
& \text { 0: } \quad(\text { Length } x)+(\text { Length } y)=\operatorname{Length}(x \oplus y) \quad \text { from } \quad \mathrm{H}: x: y \\
& \text { 1: } \quad \neg(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))=\operatorname{Length}(x \oplus(y \oplus \underline{0})) \quad \vee \quad \neg(\text { Length } x)+(\operatorname{Length}(y \oplus \\
& \underline{1}))=\operatorname{Length}(x \oplus(y \oplus \underline{1})) \quad \text { from } \quad \mathrm{H}: x: y
\end{aligned}
$$

2: $\operatorname{Length}(y \oplus \underline{0})=\mathrm{S}($ Length $y) \quad$ from $\underline{259} ; y$
3: $\operatorname{Length}(y \oplus \underline{1})=\mathrm{S}($ Length $y) \quad$ from $\quad 259 ; y$
4: $\quad x \oplus(y \oplus \underline{0})=(x \oplus y) \oplus \underline{0} \quad$ from $\quad \underline{183 ;} ; x ; y ; \underline{0}$
$5: \quad x \oplus(y \oplus \underline{1})=(x \oplus y) \oplus \underline{1} \quad$ from $\quad \underline{183} ; x ; y ; \underline{1}$
6: \quad Length $((x \oplus y) \oplus \underline{0})=\mathrm{S}($ Length $(x \oplus y)) \quad$ from $\quad \underline{259 ;} ; x \oplus y$
7: \quad Length $((x \oplus y) \oplus \underline{1})=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad$ from $\quad \underline{259} ; x \oplus y$
8: $\quad \mathrm{S}(($ Length $x)+(\operatorname{Length} y))=($ Length $x)+(\mathrm{S}($ Length $y)) \quad$ from \quad 12;Length $x ;$ Length y

Equality substitutions:

9: $\neg($ Length $x)+($ Length $y)=$ Length $(x \oplus y) \quad \vee \quad \neg \mathrm{S}(($ Length $x)+($ Length $y))=$ $($ Length $x)+(\mathrm{S}($ Length $y)) \vee \mathrm{S}($ Length $(x \oplus y))=($ Length $x)+(\mathrm{S}($ Length $y))$

10: $\neg \operatorname{Length}(y \oplus \underline{0})=\mathrm{S}(\operatorname{Length} y) \quad \vee \quad(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y))$ $\vee \neg($ Length $x)+(\mathrm{S}($ Length $y))=\mathrm{S}($ Length $(x \oplus y))$

11: $\neg \operatorname{Length}(y \oplus \underline{1})=\mathrm{S}(\operatorname{Length} y) \quad \vee \quad(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y))$
$\vee \neg($ Length $x)+(\mathrm{S}($ Length $y))=\mathrm{S}($ Length $(x \oplus y))$
12: $\neg x \oplus(y \oplus \underline{0})=(x \oplus y) \oplus \underline{0} \quad \vee \quad \operatorname{Length}(x \oplus(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y))$
$\vee \neg \operatorname{Length}((x \oplus y) \oplus \underline{0})=\mathrm{S}(\operatorname{Length}(x \oplus y))$
13: $\neg x \oplus(y \oplus \underline{1})=(x \oplus y) \oplus \underline{1} \quad \vee \quad \operatorname{Length}(x \oplus(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y))$ $\vee \neg \operatorname{Length}((x \oplus y) \oplus \underline{1})=\mathrm{S}(\operatorname{Length}(x \oplus y))$

14: $\neg(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \vee($ Length $x)+(\operatorname{Length}(y \oplus \underline{0}))=$ $\operatorname{Length}(x \oplus(y \oplus \underline{0})) \quad \vee \quad \neg \mathrm{S}(\operatorname{Length}(x \oplus y))=\operatorname{Length}(x \oplus(y \oplus \underline{0}))$

15: $\neg(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \vee(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=$ $\operatorname{Length}(x \oplus(y \oplus \underline{1})) \quad \vee \quad \neg S(\operatorname{Length}(x \oplus y))=\operatorname{Length}(x \oplus(y \oplus \underline{1}))$

Inferences:

16: $\neg \mathrm{S}(($ Length $x)+($ Length $y))=($ Length $x)+(\mathrm{S}($ Length $y)) \quad \vee \quad($ Length $x)+$ $(\mathrm{S}($ Length $y))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad$ by
$0:($ Length $x)+($ Length $y)=$ Length $(x \oplus y)$
9: $\neg($ Length $x)+($ Length $y)=\operatorname{Length}(x \oplus y) \quad \vee \quad \neg \mathrm{S}(($ Length $x)+($ Length $y))=$ $($ Length $x)+(\mathrm{S}($ Length $y)) \vee($ Length $x)+(\mathrm{S}($ Length $y))=\mathrm{S}(\operatorname{Length}(x \oplus y))$

17: $(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad \vee \quad \neg($ Length $x)+(\mathrm{S}($ Length $y))=$ $\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad$ by

2: Length $(y \oplus \underline{0})=\mathrm{S}($ Length $y)$
10: $\neg \operatorname{Length}(y \oplus \underline{0})=\mathrm{S}($ Length $y) \vee($ Length $x)+(\operatorname{Length}(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y))$ $\vee \neg($ Length $x)+(\mathrm{S}($ Length $y))=\mathrm{S}($ Length $(x \oplus y))$

18: $(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad \vee \quad \neg(\operatorname{Length} x)+(\mathrm{S}($ Length $y))=$ $\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad$ by

3: Length $(y \oplus \underline{1})=\mathrm{S}($ Length $y)$
11: $\neg \operatorname{Length}(y \oplus \underline{1})=\mathrm{S}($ Length $y) \vee(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y))$ $\vee \neg($ Length $x)+(\mathrm{S}($ Length $y))=\mathrm{S}($ Length $(x \oplus y))$

19: $\operatorname{Length}(x \oplus(y \oplus \underline{0}))=\mathrm{S}($ Length $(x \oplus y)) \vee \neg \operatorname{Length}((x \oplus y) \oplus \underline{0})=\mathrm{S}(\operatorname{Length}(x \oplus y))$ by

4: $x \oplus(y \oplus \underline{0})=(x \oplus y) \oplus \underline{0}$
12: $\neg x \oplus(y \oplus \underline{0})=(x \oplus y) \oplus \underline{0} \quad \vee \quad \operatorname{Length}(x \oplus(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y))$
$\vee \neg \operatorname{Length}((x \oplus y) \oplus \underline{0})=\mathrm{S}(\operatorname{Length}(x \oplus y))$
20: $\quad \operatorname{Length}(x \oplus(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad \vee \neg \operatorname{Length}((x \oplus y) \oplus \underline{1})=\mathrm{S}(\operatorname{Length}(x \oplus y))$ by

5: $x \oplus(y \oplus \underline{1})=(x \oplus y) \oplus \underline{1}$
13: $\neg x \oplus(y \oplus \underline{1})=(x \oplus y) \oplus \underline{1} \quad \vee \quad \operatorname{Length}(x \oplus(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y))$
$\vee \neg \operatorname{Length}((x \oplus y) \oplus \underline{1})=\mathrm{S}(\operatorname{Length}(x \oplus y))$
21: Length $(x \oplus(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad$ by
6: Length $((x \oplus y) \oplus \underline{0})=\mathrm{S}(\operatorname{Length}(x \oplus y))$

19: Length $(x \oplus(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad \vee \quad \neg \operatorname{Length}((x \oplus y) \oplus \underline{0})=$ $\mathrm{S}($ Length $(x \oplus y))$

22: $\quad \operatorname{Length}(x \oplus(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad$ by
7: Length $((x \oplus y) \oplus \underline{1})=\mathrm{S}(\operatorname{Length}(x \oplus y))$
20: Length $(x \oplus(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad \vee \quad \neg \operatorname{Length}((x \oplus y) \oplus \underline{1})=$ $\mathrm{S}($ Length $(x \oplus y))$

23: $\quad($ Length $x)+(\mathrm{S}(\operatorname{Length} y))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad$ by
8: $\mathrm{S}((\operatorname{Length} x)+($ Length $y))=($ Length $x)+($ S(Length $y))$
16: $\neg \mathrm{S}(($ Length $x)+($ Length $y))=($ Length $x)+(\mathrm{S}($ Length $y)) \quad \vee \quad($ Length $x)+$ $(\mathrm{S}($ Length $y))=\mathrm{S}($ Length $(x \oplus y))$

24: $\neg($ Length $x)+(\operatorname{Length}(y \oplus \underline{0}))=\mathrm{S}($ Length $(x \oplus y)) \quad \vee($ Length $x)+(\operatorname{Length}(y \oplus \underline{0}))=$ $\operatorname{Length}(x \oplus(y \oplus \underline{0})) \quad$ by

21: Length $(x \oplus(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y))$
14: $\neg(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad \vee \quad($ Length $x)+($ Length $(y \oplus$ $\underline{0}))=\operatorname{Length}(x \oplus(y \oplus \underline{0})) \quad \vee \quad \neg \operatorname{Length}(x \oplus(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y))$

25: $\neg(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \vee(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=$ $\operatorname{Length}(x \oplus(y \oplus \underline{1})) \quad$ by

22: $\operatorname{Length}(x \oplus(y \oplus \underline{1}))=S(\operatorname{Length}(x \oplus y))$
15: $\neg(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad \vee \quad($ Length $x)+($ Length $(y \oplus$ $\underline{1}))=\operatorname{Length}(x \oplus(y \oplus \underline{1})) \quad \vee \quad \neg \operatorname{Length}(x \oplus(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y))$

26: $\quad(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad$ by
23: $($ Length $x)+(\mathrm{S}($ Length $y))=\mathrm{S}($ Length $(x \oplus y))$
17: $($ Length $x)+(\operatorname{Length}(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \vee \neg($ Length $x)+(\mathrm{S}($ Length $y))=$ $\mathrm{S}($ Length $(x \oplus y))$

27: $\quad(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad$ by
23: $($ Length $x)+(\mathrm{S}($ Length $y))=\mathrm{S}($ Length $(x \oplus y))$
18: $(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \vee \neg($ Length $x)+(\mathrm{S}($ Length $y))=$ S(Length $(x \oplus y))$

28: $\quad(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))=\operatorname{Length}(x \oplus(y \oplus \underline{0})) \quad$ by
26: $(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))=S(\operatorname{Length}(x \oplus y))$
24: $\neg(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad \vee \quad($ Length $x)+(\operatorname{Length}(y \oplus$ $\underline{0}))=\operatorname{Length}(x \oplus(y \oplus \underline{0}))$

29: $\quad(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\operatorname{Length}(x \oplus(y \oplus \underline{1})) \quad$ by

27: $(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=S(\operatorname{Length}(x \oplus y))$
25: $\neg(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\mathrm{S}(\operatorname{Length}(x \oplus y)) \quad \vee \quad(\operatorname{Length} x)+(\operatorname{Length}(y \oplus$ $\underline{1}))=\operatorname{Length}(x \oplus(y \oplus \underline{1}))$

30: $\quad \neg(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\operatorname{Length}(x \oplus(y \oplus \underline{1})) \quad$ by
28: $(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))=\operatorname{Length}(x \oplus(y \oplus \underline{0}))$
1: $\neg(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{0}))=\operatorname{Length}(x \oplus(y \oplus \underline{0})) \quad \vee \quad \neg($ Length $x)+$ $(\operatorname{Length}(y \oplus \underline{1}))=\operatorname{Length}(x \oplus(y \oplus \underline{1}))$

31: $Q E A$ by
29: $(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\operatorname{Length}(x \oplus(y \oplus \underline{1}))$
30: $\neg(\operatorname{Length} x)+(\operatorname{Length}(y \oplus \underline{1}))=\operatorname{Length}(x \oplus(y \oplus \underline{1}))$

