Proof of Theorem 260b

The theorem to be proved is
Length $(x \oplus \epsilon)=$ Length $x+$ Length ϵ
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg($ Length $(x \oplus \epsilon))=(($ Length $x)+($ Length $\epsilon))]]$

Special cases of the hypothesis and previous results:

0: $\neg($ Length $x)+($ Length $\epsilon)=\operatorname{Length}(x \oplus \epsilon) \quad$ from $\quad \mathrm{H}: x$
1: $x \oplus \epsilon=x \quad$ from $\quad \underline{196} ; x$
2: Length $\epsilon=0 \quad$ from $\underline{259}$
3: $\quad($ Length $x)+0=\operatorname{Length} x \quad$ from $\quad \underline{12} ;$ Length x

Equality substitutions:

4: $\neg x \oplus \epsilon=x \vee($ Length $x)+($ Length $\epsilon)=\operatorname{Length}(x \oplus \epsilon) \vee \neg($ Length $x)+($ Length $)=$ Length(x)

5: \neg Length $\epsilon=0 \vee($ Length $x)+($ Length $\epsilon)=$ Length $x \quad \vee \quad \neg($ Length $x)+(0)=$ Length x

Inferences:

6: $\quad \neg x \oplus \epsilon=x \quad \vee \quad \neg($ Length $x)+($ Length $\epsilon)=$ Length $x \quad$ by
$0: \neg($ Length $x)+($ Length $\epsilon)=$ Length $(x \oplus \epsilon)$
4: $\neg x \oplus \epsilon=x \quad \vee \quad($ Length $x)+($ Length $\epsilon)=$ Length $(x \oplus \epsilon) \quad \vee \quad \neg($ Length $x)+$ $($ Length $\epsilon)=$ Length x

7: $\neg($ Length $x)+($ Length $\epsilon)=$ Length $x \quad$ by
1: $x \oplus \epsilon=x$
6: $\neg x \oplus \epsilon=x \quad \vee \quad \neg($ Length $x)+($ Length $\epsilon)=$ Length x
8: $\quad($ Length $x)+($ Length $\epsilon)=$ Length $x \quad \vee \quad \neg($ Length $x)+0=$ Length $x \quad$ by
2: Length $\epsilon=0$
5: \neg Length $\epsilon=0 \quad \vee($ Length $x)+($ Length $\epsilon)=$ Length $x \quad \vee \quad \neg($ Length $x)+0=$ Length x

9: $\quad($ Length $x)+($ Length $\epsilon)=$ Length $x \quad$ by
3: $($ Length $x)+0=$ Length x
8: $($ Length $x)+($ Length $\epsilon)=$ Length $x \quad \vee \quad \neg($ Length $x)+0=$ Length x
10: $Q E A$ by
7: $\neg($ Length $x)+($ Length $\epsilon)=$ Length x
9: $($ Length $x)+($ Length $\epsilon)=$ Length x

