Proof of Theorem 258

The theorem to be proved is

 $x \neq \epsilon \quad \rightarrow \quad \operatorname{Chop} x < x$

Suppose the theorem does not hold. Then, with the variables held fixed, (H) $[[\neg (x) = (\epsilon)]$ & $[\neg (Chopx) < (x)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg \epsilon = x$$
 from H:x
1: $\neg \operatorname{Chop} x < x$ from H:x
2: $\epsilon = x \lor (\operatorname{Chop} x) \oplus \underline{0} = x \lor (\operatorname{Chop} x) \oplus \underline{1} = x$ from 253;x
3: $\operatorname{Chop} x < (\operatorname{Chop} x) \oplus \underline{0}$ from 255; $\operatorname{Chop} x$
4: $\operatorname{Chop} x < (\operatorname{Chop} x) \oplus \underline{1}$ from 257; $\operatorname{Chop} x$

Equality substitutions:

5:
$$\neg$$
 (Chop x) $\oplus \underline{0} = x \lor \neg$ Chop $x < (Chop x) $\oplus \underline{0} \lor$ Chop $x < x$$

6: \neg (Chopx) $\oplus \underline{1} = x \lor \neg$ Chopx < (Chop<math>x) $\oplus \underline{1} \lor$ Chopx < x

Inferences:

7: $(\operatorname{Chop} x) \oplus \underline{0} = x \quad \lor \quad (\operatorname{Chop} x) \oplus \underline{1} = x$ by 0: $\neg \epsilon = x$ 2: $\epsilon = x \lor (\operatorname{Chop} x) \oplus \underline{0} = x \lor (\operatorname{Chop} x) \oplus \underline{1} = x$ 8: \neg (Chopx) $\oplus \underline{0} = x \lor \neg$ Chopx < (Chopx) $\oplus \underline{0}$ by 1: \neg Chopx < x5: \neg (Chopx) $\oplus \underline{0} = x \lor \neg$ Chopx < (Chopx) $\oplus \underline{0} \lor$ Chopx < x 9: \neg (Chopx) $\oplus \underline{1} = x \lor \neg$ Chopx < (Chopx) $\oplus \underline{1}$ by 1: \neg Chopx < x6: \neg (Chopx) $\oplus \underline{1} = x \lor \neg$ Chopx < (Chopx) $\oplus \underline{1} \lor$ Chopx < x10: \neg (Chopx) \oplus 0 = x by 3: $\operatorname{Chop} x < (\operatorname{Chop} x) \oplus \underline{0}$ 8: \neg (Chopx) $\oplus \underline{0} = x \lor \neg$ Chopx < (Chopx) $\oplus \underline{0}$

- 11: \neg (Chopx) $\oplus \underline{1} = x$ by 4: Chopx < (Chop<math>x) $\oplus \underline{1}$ 9: \neg (Chopx) $\oplus \underline{1} = x \lor \neg$ Chopx < (Chop<math>x) $\oplus \underline{1}$
- 12: $(\operatorname{Chop} x) \oplus \underline{1} = x$ by 10: $\neg (\operatorname{Chop} x) \oplus \underline{0} = x$ 7: $(\operatorname{Chop} x) \oplus \underline{0} = x \lor (\operatorname{Chop} x) \oplus \underline{1} = x$
- 13: QEA by 11: \neg (Chopx) $\oplus \underline{1} = x$ 12: (Chopx) $\oplus \underline{1} = x$