Proof of Theorem 258

The theorem to be proved is
$x \neq \epsilon \quad \rightarrow \quad$ Chop $x<x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(\epsilon)] \quad \& \quad[\neg(\operatorname{Chop} x)<(x)]]$

Special cases of the hypothesis and previous results:

0: $\neg \epsilon=x \quad$ from $\quad \mathrm{H}: x$
1: $\neg \operatorname{Chop} x<x$ from $\mathrm{H}: x$
2: $\quad \epsilon=x \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{0}=x \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{1}=x \quad$ from $\quad \underline{253} ; x$
3: $\operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{0}$ from 255; $\operatorname{Chop} x$
4: $\operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{1}$ from 257; Chop x

Equality substitutions:

5: $\quad \neg(\operatorname{Chop} x) \oplus \underline{0}=x \quad \vee \quad \neg \operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{0} \quad \vee \quad \operatorname{Chop} x<x$
6: $\quad \neg(\operatorname{Chop} x) \oplus \underline{1}=x \quad \vee \quad \neg \operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{1} \quad \vee \quad \operatorname{Chop} x<x$

Inferences:

7: $\quad(\operatorname{Chop} x) \oplus \underline{0}=x \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{1}=x \quad$ by
0 : $\neg \epsilon=x$
2: $\epsilon=x \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{0}=x \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{1}=x$
8: $\quad \neg(\operatorname{Chop} x) \oplus \underline{0}=x \quad \vee \quad \neg \operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{0} \quad$ by
1: \neg Chop $x<x$
5: $\neg(\operatorname{Chop} x) \oplus \underline{0}=x \quad \vee \quad \neg \operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{0} \quad \vee \operatorname{Chop} x<x$
9: $\quad \neg(\operatorname{Chop} x) \oplus \underline{1}=x \quad \vee \quad \neg \operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{1} \quad$ by
1: $\neg \operatorname{Chop} x<x$
6: $\neg(\operatorname{Chop} x) \oplus \underline{1}=x \quad \vee \quad \neg \operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{1} \vee \operatorname{Chop} x<x$
10: $\quad \neg(\operatorname{Chop} x) \oplus \underline{0}=x \quad$ by
3: $\operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{0}$
8: $\neg(\operatorname{Chop} x) \oplus \underline{0}=x \quad \vee \quad \neg \operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{0}$

11: $\neg(\operatorname{Chop} x) \oplus \underline{1}=x \quad$ by
4: $\operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{1}$
9: $\neg(\operatorname{Chop} x) \oplus \underline{1}=x \quad \vee \quad \neg \operatorname{Chop} x<(\operatorname{Chop} x) \oplus \underline{1}$
12: $\quad(\operatorname{Chop} x) \oplus \underline{1}=x \quad$ by
10: $\neg(\operatorname{Chop} x) \oplus \underline{0}=x$
7: $(\operatorname{Chop} x) \oplus \underline{0}=x \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{1}=x$
13: $Q E A$ by
11: $\neg(\operatorname{Chop} x) \oplus \underline{1}=x$
12: $(\operatorname{Chop} x) \oplus \underline{1}=x$

