Proof of Theorem 256

The theorem to be proved is
$x+1=\mathrm{S} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x+1)=(\mathrm{S} x)]]$

Special cases of the hypothesis and previous results:

$0: \quad \neg x+1=\mathrm{S} x \quad$ from $\quad \mathrm{H}: x$
1: $\quad \mathrm{S} 0=1 \quad$ from $\underline{115}$
2: $\quad x+0=x \quad$ from $\quad \underline{12} ; x ; 0$
3: $\quad \mathrm{S}(x+0)=x+(\mathrm{S} 0) \quad$ from $\quad \underline{12} ; x ; 0$

Equality substitutions:

4: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg x+(\mathrm{S} 0)=\mathrm{S} x \quad \vee \quad x+(1)=\mathrm{S} x$
5: $\neg x+0=x \quad \vee \quad \neg \mathrm{~S}(x+0)=x+(\mathrm{S} 0) \quad \vee \quad \mathrm{S}(x)=x+(\mathrm{S} 0)$

Inferences:

6: $\quad \neg \mathrm{S} 0=1 \quad \vee \quad \neg x+(\mathrm{S} 0)=\mathrm{S} x \quad$ by
0 : $\neg x+1=\mathrm{S} x$
4: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg x+(\mathrm{S} 0)=\mathrm{S} x \quad \vee \quad x+1=\mathrm{S} x$
7: $\neg x+(\mathrm{S} 0)=\mathrm{S} x \quad$ by
1: $\mathrm{S} 0=1$
6: $\neg \mathrm{S} 0=1 \quad \vee \quad \neg x+(\mathrm{S} 0)=\mathrm{S} x$
8: $\neg \mathrm{S}(x+0)=x+(\mathrm{S} 0) \vee \quad x+(\mathrm{S} 0)=\mathrm{S} x \quad$ by
2: $x+0=x$
5: $\neg x+0=x \quad \vee \quad \neg \mathrm{~S}(x+0)=x+(\mathrm{S} 0) \vee x+(\mathrm{S} 0)=\mathrm{S} x$
9: $\quad x+(\mathrm{S} 0)=\mathrm{S} x \quad$ by
3: $\mathrm{S}(x+0)=x+(\mathrm{S} 0)$
8: $\neg \mathrm{S}(x+0)=x+(\mathrm{S} 0) \vee x+(\mathrm{S} 0)=\mathrm{S} x$
10: $Q E A$ by
7: $\neg x+(\mathrm{S} 0)=\mathrm{S} x$
9: $x+(\mathrm{S} 0)=\mathrm{S} x$

