Proof of Theorem 254

 \star

The theorem to be proved is

 $y \neq \epsilon \quad \rightarrow \quad \operatorname{Chop}(x \oplus y) = x \oplus \operatorname{Chop} y$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (y) = (\epsilon)]$ & $[\neg (\operatorname{Chop}(x \oplus y)) = (x \oplus (\operatorname{Chop}(y)))]$

Special cases of the hypothesis and previous results:

0:
$$\neg \epsilon = y$$
 from H:y:x
1: $\neg \operatorname{Chop}(x \oplus y) = x \oplus (\operatorname{Chop}y)$ from H:y:x
2: $\epsilon = y \lor (\operatorname{Chop}y) \oplus \underline{0} = y \lor (\operatorname{Chop}y) \oplus \underline{1} = y$ from $\underline{253};y$
3: $x \oplus ((\operatorname{Chop}y) \oplus \underline{0}) = (x \oplus (\operatorname{Chop}y)) \oplus \underline{0}$ from $\underline{183};x;\operatorname{Chop}y;\underline{0}$
4: $x \oplus ((\operatorname{Chop}y) \oplus \underline{1}) = (x \oplus (\operatorname{Chop}y)) \oplus \underline{1}$ from $\underline{183};x;\operatorname{Chop}y;\underline{1}$
5: $\operatorname{Chop}((x \oplus (\operatorname{Chop}y)) \oplus \underline{0}) = x \oplus (\operatorname{Chop}y)$ from $\underline{243};x \oplus (\operatorname{Chop}y)$
6: $\operatorname{Chop}((x \oplus (\operatorname{Chop}y)) \oplus \underline{1}) = x \oplus (\operatorname{Chop}y)$ from $\underline{244};x \oplus (\operatorname{Chop}y)$

Equality substitutions:

7: \neg (Chopy) $\oplus \underline{0} = y \lor \neg x \oplus ((Chopy) \oplus \underline{0}) = (x \oplus (Chopy)) \oplus \underline{0} \lor x \oplus (y) = (x \oplus (Chopy)) \oplus \underline{0}$ 8: \neg (Chopy) $\oplus \underline{1} = y \lor \neg x \oplus ((Chopy) \oplus \underline{1}) = (x \oplus (Chopy)) \oplus \underline{1} \lor x \oplus (y) = (x \oplus (Chopy)) \oplus \underline{1}$ 9: $\neg (x \oplus (Chopy)) \oplus \underline{0} = x \oplus y \lor \neg Chop((x \oplus (Chopy)) \oplus \underline{0}) = x \oplus (Chopy)$ $\lor Chop(x \oplus y) = x \oplus (Chopy)$ 10: $\neg (x \oplus (Chopy)) \oplus \underline{1} = x \oplus y \lor \neg Chop((x \oplus (Chopy)) \oplus \underline{1}) = x \oplus (Chopy)$

 $\lor \quad \operatorname{Chop}(x \oplus y) = x \oplus (\operatorname{Chop} y)$

Inferences:

11:
$$(\operatorname{Chop} y) \oplus \underline{0} = y \lor (\operatorname{Chop} y) \oplus \underline{1} = y$$
 by
0: $\neg \epsilon = y$
2: $\epsilon = y \lor (\operatorname{Chop} y) \oplus \underline{0} = y \lor (\operatorname{Chop} y) \oplus \underline{1} = y$

12:
$$\neg (x \oplus (\operatorname{Chopy})) \oplus \underline{0} = x \oplus y \lor \neg \operatorname{Chop}((x \oplus (\operatorname{Chopy})) \oplus \underline{0}) = x \oplus (\operatorname{Chopy})$$

 $\vartheta : \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{0} = x \oplus y \lor \neg \operatorname{Chop}((x \oplus (\operatorname{Chopy})) \oplus \underline{0}) = x \oplus (\operatorname{Chopy})$
 $\lor \operatorname{Chop}(x \oplus y) = x \oplus (\operatorname{Chopy})$
13: $\neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y \lor \neg \operatorname{Chop}((x \oplus (\operatorname{Chopy})) \oplus \underline{1}) = x \oplus (\operatorname{Chopy})$ by
 $1: \neg \operatorname{Chop}(x \oplus y) = x \oplus (\operatorname{Chopy})$
 $10: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y \lor \neg \neg \operatorname{Chop}((x \oplus (\operatorname{Chopy})) \oplus \underline{1}) = x \oplus (\operatorname{Chopy})$ by
 $1: \neg \operatorname{Chop}(x \oplus y) = x \oplus (\operatorname{Chopy})$
 $10: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y \lor \neg \neg \operatorname{Chop}((x \oplus (\operatorname{Chopy})) \oplus \underline{1}) = x \oplus (\operatorname{Chopy})$
 $\lor \operatorname{Chop}(x \oplus y) = x \oplus (\operatorname{Chopy})$
 $14: \neg (\operatorname{Chopy}) \oplus \underline{0} = y \lor (x \oplus (\operatorname{Chopy})) \oplus \underline{0} = x \oplus y \to y$
 $3: x \oplus ((\operatorname{Chopy}) \oplus \underline{0} = (x \oplus (\operatorname{Chopy})) \oplus \underline{0}$
 $7: \neg (\operatorname{Chopy}) \oplus \underline{0} = x \oplus y$
 $15: \neg (\operatorname{Chopy}) \oplus \underline{1} = y \lor (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y \to y$
 $4: x \oplus ((\operatorname{Chopy})) \oplus \underline{1} = x \oplus y$
 $15: \neg (\operatorname{Chopy}) \oplus \underline{1} = y \lor (x \oplus (\operatorname{Chopy})) \oplus \underline{1}) = (x \oplus (\operatorname{Chopy})) \oplus \underline{1} \lor (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y)$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y \to y$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{0} = x \oplus y \to y$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{0} = x \oplus y \to y$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y \to y$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y \to y$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y \to y$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y \to y$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y \to y$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y \to y$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y$
 $16: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = x \oplus y$
 $17: \neg (x \oplus (\operatorname{Chopy})) \oplus \underline{1} = y \to y$
 $18: \neg (\operatorname{Chopy}) \oplus \underline{1} = y \to y$
 $19: \neg (\operatorname{Chopy}) \oplus \underline{1} = y \to y$
 $18: \neg (\operatorname{Chopy}) \oplus \underline{1} = y \to y$
 $18: \neg (\operatorname{Chopy}) \oplus \underline{1} = y \to y$
 $11: (\operatorname{Chopy}) \oplus \underline{1} = y \to y$
 $11: (\operatorname{Chopy}) \oplus \underline{0} = y \lor (\operatorname{Chopy}) \oplus \underline{1} = y$
 $11: (\operatorname{Chopy}) \oplus \underline{0} = y \lor (\operatorname{Chopy}) \oplus \underline{1} = y$
 $11: (\operatorname{Chopy}) \oplus \underline{0} = y \lor (\operatorname{Chopy}) \oplus \underline{1} = y$
 $11: (\operatorname{Chopy}) \oplus \underline{0} = y \lor (\operatorname{Chopy}) \oplus \underline{1} = y$
 $11: \operatorname{Chopy} \oplus \underline{0} = y \lor (\operatorname{Chopy}) \oplus \underline{1} = y$
 $11: \operatorname{Chopy} \oplus \underline$

19: \neg (Chopy) $\oplus \underline{1} = y$ 20: (Chopy) $\oplus \underline{1} = y$