Proof of Theorem 254

The theorem to be proved is
$y \neq \epsilon \quad \rightarrow \quad \operatorname{Chop}(x \oplus y)=x \oplus \operatorname{Chop} y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(y)=(\epsilon)] \quad \& \quad[\neg(\operatorname{Chop}(x \oplus y))=(x \oplus(\operatorname{Chop} y))]]$

Special cases of the hypothesis and previous results:

$0:$	$\neg \epsilon=y \quad$ from $\quad \mathrm{H}: y: x$		
$1:$	$\neg \operatorname{Chop}(x \oplus y)=x \oplus(\operatorname{Chop} y) \quad$ from $\quad \mathrm{H}: y: x$		
$2:$	$\epsilon=y \quad \vee \quad(\operatorname{Chop} y) \oplus \underline{0}=y \quad \vee \quad(\operatorname{Chop} y) \oplus \underline{1}=y \quad$ from $\quad \underline{253} ; y$		
$3:$	$x \oplus((\operatorname{Chop} y) \oplus \underline{0})=(x \oplus(\operatorname{Chop} y)) \oplus \underline{0} \quad$ from	$\underline{183 ; x ; \operatorname{Chop} y ; \underline{0}}$	
$4:$	$x \oplus((\operatorname{Chop} y) \oplus \underline{1})=(x \oplus(\operatorname{Chop} y)) \oplus \underline{1} \quad$ from	$\underline{183} ; x ; \operatorname{Chop} y ; \underline{1}$	
$5:$	$\operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{0})=x \oplus(\operatorname{Chop} y)$	from	$\underline{243} ; x \oplus(\operatorname{Chop} y)$
$6:$	$\operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{1})=x \oplus(\operatorname{Chop} y)$	from	$\underline{244} ; x \oplus(\operatorname{Chop} y)$

Equality substitutions:

7: $\neg(\operatorname{Chop} y) \oplus \underline{0}=y \quad \vee \quad \neg x \oplus((\operatorname{Chop} y) \oplus \underline{0})=(x \oplus(\operatorname{Chop} y)) \oplus \underline{0} \quad \vee \quad x \oplus(y)=$ $(x \oplus(\operatorname{Chop} y)) \oplus \underline{0}$

8: $\quad \neg(\operatorname{Chop} y) \oplus \underline{1}=y \quad \vee \quad \neg x \oplus((\operatorname{Chop} y) \oplus \underline{1})=(x \oplus(\operatorname{Chop} y)) \oplus \underline{1} \quad \vee \quad x \oplus(y)=$ $(x \oplus(\operatorname{Chop} y)) \oplus \underline{1}$

9: $\quad \neg(x \oplus(\operatorname{Chop} y)) \oplus \underline{0}=x \oplus y \quad \vee \quad \neg \operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{0})=x \oplus(\operatorname{Chop} y)$ $\vee \operatorname{Chop}(x \oplus y)=x \oplus(\operatorname{Chop} y)$

10: $\neg(x \oplus(\operatorname{Chop} y)) \oplus \underline{1}=x \oplus y \quad \vee \quad \neg \operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{1})=x \oplus(\operatorname{Chop} y)$ $\vee \operatorname{Chop}(x \oplus y)=x \oplus(\operatorname{Chop} y)$

Inferences:

11: $\quad(\operatorname{Chop} y) \oplus \underline{0}=y \quad \vee \quad(\operatorname{Chop} y) \oplus \underline{1}=y \quad$ by
$0: \neg \epsilon=y$
2: $\epsilon=y \quad \vee \quad(\operatorname{Chop} y) \oplus \underline{0}=y \quad \vee \quad(\operatorname{Chop} y) \oplus \underline{1}=y$

12: $\quad \neg(x \oplus(\operatorname{Chop} y)) \oplus \underline{0}=x \oplus y \quad \vee \quad \neg \operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{0})=x \oplus(\operatorname{Chop} y) \quad$ by 1: $\neg \operatorname{Chop}(x \oplus y)=x \oplus(C h o p y)$
9: $\neg(x \oplus(\operatorname{Chop} y)) \oplus \underline{0}=x \oplus y \quad \vee \quad \neg \operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{0})=x \oplus(\operatorname{Chop} y)$
$\vee \operatorname{Chop}(x \oplus y)=x \oplus(\operatorname{Chop} y)$
13: $\quad \neg(x \oplus(\operatorname{Chop} y)) \oplus \underline{1}=x \oplus y \quad \vee \quad \neg \operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{1})=x \oplus(\operatorname{Chop} y) \quad$ by
1: $\neg \operatorname{Chop}(x \oplus y)=x \oplus(\operatorname{Chop} y)$
10: $\neg(x \oplus(\operatorname{Chop} y)) \oplus \underline{1}=x \oplus y \quad \vee \quad \neg \operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{1})=x \oplus(\operatorname{Chop} y)$
$\vee \operatorname{Chop}(x \oplus y)=x \oplus(\operatorname{Chop} y)$
14: $\quad \neg(\operatorname{Chop} y) \oplus \underline{0}=y \quad \vee \quad(x \oplus(\operatorname{Chop} y)) \oplus \underline{0}=x \oplus y \quad$ by
3: $x \oplus(($ Chop $y) \oplus \underline{0})=(x \oplus(\operatorname{Chop} y)) \oplus \underline{0}$
$7: \neg(\operatorname{Chop} y) \oplus \underline{0}=y \quad \vee \quad \neg x \oplus((\operatorname{Chop} y) \oplus \underline{0})=(x \oplus(\operatorname{Chop} y)) \oplus \underline{0} \quad \vee$ $(x \oplus(\operatorname{Chop} y)) \oplus \underline{0}=x \oplus y$

15: $\quad \neg(\operatorname{Chop} y) \oplus \underline{1}=y \quad \vee \quad(x \oplus(\operatorname{Chop} y)) \oplus \underline{1}=x \oplus y \quad$ by
4: $x \oplus(($ Chop $y) \oplus \underline{1})=(x \oplus(\operatorname{Chop} y)) \oplus \underline{1}$
8: $\neg(\operatorname{Chop} y) \oplus \underline{1}=y \quad \vee \quad \neg x \oplus(($ Chop $y) \oplus \underline{1})=(x \oplus($ Chop $y)) \oplus \underline{1} \quad \vee$ $(x \oplus($ Chop $y)) \oplus \underline{1}=x \oplus y$

16: $\quad \neg(x \oplus(\operatorname{Chop} y)) \oplus \underline{0}=x \oplus y \quad$ by
5: $\operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{0})=x \oplus($ Chop $y)$
12: $\neg(x \oplus(\operatorname{Chop} y)) \oplus \underline{0}=x \oplus y \quad \vee \quad \neg \operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{0})=x \oplus(\operatorname{Chop} y)$
17: $\quad \neg(x \oplus(\operatorname{Chop} y)) \oplus \underline{1}=x \oplus y \quad$ by
6: $\operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{1})=x \oplus($ Chop $y)$
13: $\neg(x \oplus(\operatorname{Chop} y)) \oplus \underline{1}=x \oplus y \quad \vee \quad \neg \operatorname{Chop}((x \oplus(\operatorname{Chop} y)) \oplus \underline{1})=x \oplus(\operatorname{Chop} y)$
18: $\neg(\operatorname{Chop} y) \oplus \underline{0}=y \quad$ by
16: $\neg(x \oplus($ Chop $y)) \oplus \underline{0}=x \oplus y$
14: $\neg(\operatorname{Chop} y) \oplus \underline{0}=y \quad \vee \quad(x \oplus(\operatorname{Chop} y)) \oplus \underline{0}=x \oplus y$
19: $\neg(\operatorname{Chop} y) \oplus \underline{1}=y \quad$ by
17: $\neg(x \oplus($ Chop $y)) \oplus \underline{1}=x \oplus y$
15: $\neg(\operatorname{Chop} y) \oplus \underline{1}=y \quad \vee \quad(x \oplus(\operatorname{Chop} y)) \oplus \underline{1}=x \oplus y$
20: $\quad(\operatorname{Chop} y) \oplus \underline{1}=y \quad$ by
18: $\neg(\operatorname{Chop} y) \oplus \underline{0}=y$
11: $(\mathrm{Chop} y) \oplus \underline{0}=y \quad \vee \quad(\operatorname{Chop} y) \oplus \underline{1}=y$
21: $Q E A$ by

19: $\neg(\operatorname{Chop} y) \oplus \underline{1}=y$
20: $(\mathrm{Chop} y) \oplus 1=y$

