Proof of Theorem 253

The theorem to be proved is
$x \neq \epsilon \quad \rightarrow \quad x=\operatorname{Chop} x \oplus \underline{0} \quad \vee \quad x=\operatorname{Chop} x \oplus \underline{1}$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(\epsilon)] \quad \& \quad[\neg(x)=((\operatorname{Chop} x) \oplus \underline{0})] \quad \& \quad[\neg(x)=((\operatorname{Chop} x) \oplus \underline{1})]]$

Special cases of the hypothesis and previous results:

0: $\neg \epsilon=x \quad$ from $\quad \mathrm{H}: x$
1: $\neg(\operatorname{Chop} x) \oplus \underline{0}=x \quad$ from $\quad \mathrm{H}: x$
2: $\neg(\operatorname{Chop} x) \oplus \underline{1}=x \quad$ from $\quad \mathrm{H}: x$
3: $\quad \epsilon=x \quad \vee \quad \neg \operatorname{Parity}(\mathrm{R} x)=0 \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{0}=x \quad$ from $\quad \underline{251} ; x$
4: $\quad \epsilon=x \quad \vee \neg \operatorname{Parity}(\mathrm{R} x)=1 \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{1}=x \quad$ from $\quad \underline{252} ; x$
5: $\quad \operatorname{Parity}(\mathrm{R} x)=0 \quad \vee \quad \operatorname{Parity}(\mathrm{R} x)=1 \quad$ from $\quad \underline{209} ; \mathrm{R} x$

Inferences:

6: $\quad \neg \operatorname{Parity}(\mathrm{R} x)=0 \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{0}=x \quad$ by
0: $\neg \epsilon=x$
3: $\epsilon=x \quad \vee \quad \neg \operatorname{Parity}(\mathrm{R} x)=0 \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{0}=x$
7: $\quad \neg \operatorname{Parity}(\mathrm{R} x)=1 \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{1}=x \quad$ by
0 : $\neg \epsilon=x$
4: $\epsilon=x \quad \vee \quad \neg \operatorname{Parity}(\mathrm{R} x)=1 \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{1}=x$
8: $\neg \operatorname{Parity}(\mathrm{R} x)=0 \quad$ by
1: $\neg(\operatorname{Chop} x) \oplus \underline{0}=x$
6: $\neg \operatorname{Parity}(\mathrm{R} x)=0 \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{0}=x$
9: $\quad \neg \operatorname{Parity}(\mathrm{R} x)=1 \quad$ by
2: $\neg(\operatorname{Chop} x) \oplus \underline{1}=x$
7: $\neg \operatorname{Parity}(\mathrm{R} x)=1 \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{1}=x$
10: $\operatorname{Parity}(\mathrm{R} x)=1 \quad$ by
8: $\neg \operatorname{Parity}(\mathrm{R} x)=0$
5: $\operatorname{Parity}(\mathrm{R} x)=0 \vee \operatorname{Parity}(\mathrm{R} x)=1$
11: $Q E A \quad$ by
9: $\neg \operatorname{Parity}(\mathrm{R} x)=1$
10: $\operatorname{Parity}(\mathrm{R} x)=1$

