Proof of Theorem 253

The theorem to be proved is

 $x \neq \epsilon \quad \rightarrow \quad x = \operatorname{Chop} x \oplus \underline{0} \quad \lor \quad x = \operatorname{Chop} x \oplus \underline{1}$

Suppose the theorem does not hold. Then, with the variables held fixed,

 $(\mathrm{H}) \quad [[\neg (x) = (\epsilon)] \quad \& \quad [\neg (x) = ((\mathrm{Chop} x) \oplus \underline{0})] \quad \& \quad [\neg (x) = ((\mathrm{Chop} x) \oplus \underline{1})]]$

Special cases of the hypothesis and previous results:

0:
$$\neg \epsilon = x$$
 from H:x
1: $\neg (Chopx) \oplus \underline{0} = x$ from H:x
2: $\neg (Chopx) \oplus \underline{1} = x$ from H:x
3: $\epsilon = x \lor \neg Parity(Rx) = 0 \lor (Chopx) \oplus \underline{0} = x$ from $\underline{251};x$
4: $\epsilon = x \lor \neg Parity(Rx) = 1 \lor (Chopx) \oplus \underline{1} = x$ from $\underline{252};x$
5: $Parity(Rx) = 0 \lor Parity(Rx) = 1$ from $\underline{209};Rx$

Inferences:

6:
$$\neg \operatorname{Parity}(\operatorname{R} x) = 0 \lor (\operatorname{Chop} x) \oplus \underline{0} = x$$
 by
0: $\neg \epsilon = x$
3: $\epsilon = x \lor \neg \operatorname{Parity}(\operatorname{R} x) = 0 \lor (\operatorname{Chop} x) \oplus \underline{0} = x$

7:
$$\neg \operatorname{Parity}(\operatorname{R} x) = 1 \lor (\operatorname{Chop} x) \oplus \underline{1} = x$$
 by
0: $\neg \epsilon = x$
4: $\epsilon = x \lor \neg \operatorname{Parity}(\operatorname{R} x) = 1 \lor (\operatorname{Chop} x) \oplus \underline{1} = x$

8:
$$\neg \operatorname{Parity}(\operatorname{R} x) = 0$$
 by
1: $\neg (\operatorname{Chop} x) \oplus \underline{0} = x$
6: $\neg \operatorname{Parity}(\operatorname{R} x) = 0 \lor (\operatorname{Chop} x) \oplus \underline{0} = x$

9:
$$\neg \operatorname{Parity}(\operatorname{R} x) = 1$$
 by
2: $\neg (\operatorname{Chop} x) \oplus \underline{1} = x$
7: $\neg \operatorname{Parity}(\operatorname{R} x) = 1 \lor (\operatorname{Chop} x) \oplus \underline{1} = x$

10:
$$\operatorname{Parity}(\mathbf{R}x) = 1$$
 by
8: $\neg \operatorname{Parity}(\mathbf{R}x) = 0$
5: $\operatorname{Parity}(\mathbf{R}x) = 0 \lor \operatorname{Parity}(\mathbf{R}x) = 1$

11: QEA by 9: \neg Parity($\mathbf{R}x$) = 1 10: Parity($\mathbf{R}x$) = 1

**