Proof of Theorem 252

The theorem to be proved is
$x \neq \epsilon \quad \& \quad$ Parity $\mathrm{R} x=1 \quad \rightarrow \quad x=\operatorname{Chop} x \oplus \underline{1}$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(\epsilon)] \quad \& \quad[(\operatorname{Parity}(\mathrm{R} x))=(1)] \quad \& \quad[\neg(x)=((\operatorname{Chop} x) \oplus \underline{1})]]$

Special cases of the hypothesis and previous results:

0: $\neg \epsilon=x \quad$ from $\quad \mathrm{H}: x$
1: $\quad \operatorname{Parity}(\mathrm{R} x)=1$ from $\mathrm{H}: x$
2: $\neg(\operatorname{Chop} x) \oplus \underline{1}=x \quad$ from $\quad \mathrm{H}: x$
3: $\quad \epsilon=x \quad \vee \quad \mathrm{Q}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{Q} x \quad$ from $\quad \underline{245} ; x$
4: $\quad \epsilon=x \quad \vee \neg \operatorname{Parity}(\mathrm{R} x)=1 \quad \vee \quad \mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x \quad$ from $\quad \underline{250} ; x$
5: $\neg \mathrm{Q}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{Q} x \quad \vee \quad \neg \mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{1}=x \quad$ from $\underline{193 ;} ; ;(\operatorname{Chop} x) \oplus \underline{1}$

Inferences:

6: $\quad \mathrm{Q}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{Q} x \quad$ by
0 : $\neg \epsilon=x$
3: $\epsilon=x \quad \vee \quad \mathrm{Q}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{Q} x$
7: $\quad \neg \operatorname{Parity}(\mathrm{R} x)=1 \quad \vee \quad \mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x \quad$ by
0: $\neg \epsilon=x$
4: $\epsilon=x \quad \vee \quad \neg \operatorname{Parity}(\mathrm{R} x)=1 \quad \vee \quad \mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x$
8: $\quad \mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x \quad$ by
1: $\operatorname{Parity}(\mathrm{R} x)=1$
7: $\neg \operatorname{Parity}(\mathrm{R} x)=1 \quad \vee \quad \mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x$
9: $\quad \neg \mathrm{Q}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{Q} x \quad \vee \quad \neg \mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x \quad$ by
$2: \neg(\operatorname{Chop} x) \oplus \underline{1}=x$
5: $\neg \mathrm{Q}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{Q} x \quad \vee \quad \neg \mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x \quad \vee \quad(\operatorname{Chop} x) \oplus \underline{1}=x$
10: $\neg \mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x \quad$ by
6: $\mathrm{Q}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{Q} x$
9: $\neg \mathrm{Q}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{Q} x \quad \vee \quad \neg \mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x$

11: $Q E A$ by
8: $\mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x$
10: $\neg \mathrm{R}((\operatorname{Chop} x) \oplus \underline{1})=\mathrm{R} x$

