Proof of Theorem 25

The theorem to be proved is

 $x \neq 0$ & $\mathbf{P}x = 0 \rightarrow x = \mathbf{S}0$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (x) = (0)] \& [(Px) = (0)] \& [\neg (x) = (S0)]]$

Special cases of the hypothesis and previous results:

0: $\neg 0 = x$ from H:x 1: Px = 0 from H:x 2: $\neg S0 = x$ from H:x 3: $0 = x \lor S(Px) = x$ from <u>22</u>;x

Equality substitutions:

4:
$$\neg \mathbf{P}x = 0 \lor \neg \mathbf{S}(\mathbf{P}x) = x \lor \mathbf{S}(\mathbf{0}) = x$$

Inferences:

5:
$$S(Px) = x$$
 by
 $0: \neg 0 = x$
 $3: 0 = x \lor S(Px) = x$
6: $\neg S(Px) = x \lor S0 = x$ by
 $1: Px = 0$
 $4: \neg Px = 0 \lor \neg S(Px) = x \lor S0 = x$
7: $\neg S(Px) = x$ by

- 2: $\neg S0 = x$ 6: $\neg S(Px) = x \lor S0 = x$
- 8: QEA by 5: S(Px) = x7: $\neg S(Px) = x$