Proof of Theorem 25

The theorem to be proved is
$x \neq 0 \quad \& \quad \mathrm{P} x=0 \quad \rightarrow \quad x=\mathrm{S} 0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(0)] \quad \& \quad[(\mathrm{P} x)=(0)] \quad \& \quad[\neg(x)=(\mathrm{S} 0)]]$

Special cases of the hypothesis and previous results:
$0: \quad \neg 0=x \quad$ from $\quad \mathrm{H}: x$
1: $\mathrm{P} x=0 \quad$ from $\mathrm{H}: x$
2: $\quad \neg \mathrm{S} 0=x \quad$ from $\quad \mathrm{H}: x$
3: $0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x \quad$ from $\quad \underline{22 ;} x$
Equality substitutions:

4: $\neg \mathrm{P} x=0 \quad \vee \quad \neg \mathrm{~S}(\mathrm{P} x)=x \quad \vee \quad \mathrm{~S}(0)=x$

Inferences:

5: $\quad \mathrm{S}(\mathrm{P} x)=x \quad$ by
0: $\neg 0=x$
3: $0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x$
6: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \mathrm{~S} 0=x \quad$ by
1: $\mathrm{P} x=0$
4: $\neg \mathrm{P} x=0 \quad \vee \quad \neg \mathrm{~S}(\mathrm{P} x)=x \quad \vee \quad \mathrm{~S} 0=x$
7: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad$ by
2: $\neg \mathrm{S} 0=x$
6: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \mathrm{~S} 0=x$
8: $Q E A$ by
5: $\mathrm{S}(\mathrm{P} x)=x$
7: $\neg \mathrm{S}(\mathrm{P} x)=x$

