Proof of Theorem 246

The theorem to be proved is
Parity $x=$ Parity $y \quad \& \quad$ Half $x=$ Half $y \quad \rightarrow \quad x=y$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(\operatorname{Parity} x)=(\operatorname{Parity} y)] \quad \& \quad[(\operatorname{Half} x)=($ Half $y)] \quad \& \quad[\neg(x)=(y)]]$

Special cases of the hypothesis and previous results:

0: Parity $y=\operatorname{Parity} x \quad$ from $\quad \mathrm{H}: x: y$
1: Half $y=$ Half $x \quad$ from $\quad \mathrm{H}: x: y$
2: $\quad \neg y=x \quad$ from $\quad \mathrm{H}: x: y$
3: \neg Parity $x=0 \quad \vee 2 \cdot($ Half $x)=x \quad$ from $\quad \underline{224} ; x$
4: \neg Parity $y=0 \quad \vee \quad 2 \cdot($ Halfy $)=y \quad$ from $\quad \underline{224} ; y$
5: \neg Parity $x=1 \quad \vee \quad(2 \cdot($ Half $x))+1=x \quad$ from $\quad \underline{225} ; x$
6: $\quad \neg$ Parity $y=1 \quad \vee \quad(2 \cdot($ Half $y))+1=y \quad$ from $\quad \underline{225} ; y$
7: Parity $x=0 \vee \operatorname{Parity} x=1 \quad$ from 209; x

Equality substitutions:

8: \neg Parity $y=\operatorname{Parity} x \quad \vee$ Parity $y=0 \quad \vee \quad \neg \operatorname{Parity} x=0$
9: $\neg \operatorname{Parity} y=\operatorname{Parity} x \quad \vee \quad \operatorname{Parity} y=1 \quad \vee \quad \neg \operatorname{Parity} x=1$
10: \neg Half $y=$ Half $x \quad \vee \neg 2 \cdot($ Half $y)=y \quad \vee \quad 2 \cdot($ Half $x)=y$
11: \neg Half $y=$ Half $x \quad \vee \neg(2 \cdot($ Halfy $))+1=y \quad \vee \quad(2 \cdot($ Half $x))+1=y$
12: $\quad \neg 2 \cdot($ Half $x)=x \quad \vee \quad \neg 2 \cdot($ Half $x)=y \quad \vee \quad x=y$
13: $\neg(2 \cdot(\operatorname{Half} x))+1=x \quad \vee \quad \neg(2 \cdot(\operatorname{Half} x))+1=y \quad \vee \quad x=y$

Inferences:

14: Parity $y=0 \vee \neg \operatorname{Parity} x=0 \quad$ by
0: Parity $y=$ Parity x
8: \neg Parity $y=\operatorname{Parity} x \quad \vee \quad$ Parity $y=0 \quad \vee \quad \neg \operatorname{Parity} x=0$

15: Parity $y=1 \vee \neg \operatorname{Parity} x=1 \quad$ by
0: Parity $=$ Parity x
9: \neg Parity $y=\operatorname{Parity} x \quad \vee \quad$ Parity $y=1 \quad \vee \quad \neg \operatorname{Parity} x=1$
16: $\quad \neg 2 \cdot($ Half $y)=y \quad \vee \quad 2 \cdot(\operatorname{Half} x)=y \quad$ by
1: Halfy = Half x
10: \neg Half $y=\operatorname{Half} x \quad \vee \neg 2 \cdot($ Half $y)=y \quad \vee 2 \cdot($ Half $x)=y$
17: $\quad \neg(2 \cdot($ Half $y))+1=y \quad \vee \quad(2 \cdot(\operatorname{Half} x))+1=y \quad$ by
1: Halfy = Half x
11: \neg Half $y=$ Half $x \quad \vee \neg(2 \cdot($ Half $y))+1=y \quad \vee \quad(2 \cdot($ Half $x))+1=y$
18: $\neg 2 \cdot(\operatorname{Half} x)=x \quad \vee \quad \neg 2 \cdot(\operatorname{Half} x)=y \quad$ by
2: $\neg y=x$
12: $\neg 2 \cdot($ Half $x)=x \quad \vee \quad \neg 2 \cdot($ Half $x)=y \quad \vee \quad y=x$
19: $\neg(2 \cdot(\operatorname{Half} x))+1=x \quad \vee \quad \neg(2 \cdot(\operatorname{Half} x))+1=y \quad$ by
2: $\neg y=x$
13: $\neg(2 \cdot(\operatorname{Half} x))+1=x \quad \vee \quad \neg(2 \cdot($ Half $x))+1=y \quad \vee \quad y=x$
CLAIM: Parity $x=0 \quad$ Suppose not. Then
20: $\neg \operatorname{Parity} x=0$
21: \quad Parity $x=1 \quad$ by
20: \neg Parity $x=0$
7: Parity $x=0 \vee$ Parity $x=1$
22: $\quad(2 \cdot(\operatorname{Half} x))+1=x \quad$ by
21: Parity $x=1$
5: \neg Parity $x=1 \vee(2 \cdot($ Half $x))+1=x$
23: Parity $y=1 \quad$ by
21: Parity $x=1$
15: Parity $y=1 \quad \vee \quad \neg \operatorname{Parity} x=1$
24: $\neg(2 \cdot(\operatorname{Half} x))+1=y \quad$ by
22: $(2 \cdot($ Half $x))+1=x$
19: $\neg(2 \cdot($ Half $x))+1=x \quad \vee \quad \neg(2 \cdot($ Half $x))+1=y$
25: $\quad(2 \cdot($ Half $y))+1=y \quad$ by
23: Parity $=1$
6: \neg Parity $y=1 \quad \vee \quad(2 \cdot($ Half $y))+1=y$

26: $\neg(2 \cdot($ Halfy $))+1=y \quad$ by
24: $\neg(2 \cdot($ Half $x))+1=y$
17: $\neg(2 \cdot($ Half $y))+1=y \quad \vee \quad(2 \cdot($ Half $x))+1=y$
27: Parity $x=0$ The CLAIM is proved, and $20-26$ will not be used after this:
25: $(2 \cdot($ Halfy $y))+1=y$
26: $\neg(2 \cdot($ Halfy $))+1=y$
28: $2 \cdot(\operatorname{Half} x)=x \quad$ by
27: Parity $x=0$
3: \neg Parity $x=0 \quad \vee \quad 2 \cdot($ Half $x)=x$
29: Parity $y=0 \quad$ by
27: Parity $x=0$
14: Parity $y=0 \vee \neg \operatorname{Parity} x=0$
30: $\neg 2 \cdot(\operatorname{Half} x)=y \quad$ by
28: $2 \cdot($ Half $x)=x$
18: $\neg 2 \cdot($ Half $x)=x \quad \vee \quad \neg 2 \cdot($ Half $x)=y$
31: $2 \cdot($ Half $y)=y \quad$ by
29: Parity $=0$
4: \neg Parity $y=0 \vee 2 \cdot($ Half $y)=y$
32: $\neg 2 \cdot($ Half $y)=y \quad$ by
30: $\neg 2 \cdot($ Half $x)=y$
16: $\neg 2 \cdot($ Half $y)=y \quad \vee \quad 2 \cdot($ Half $x)=y$
33: $Q E A$ by
31: $2 \cdot($ Halfy $)=y$
32: $\neg 2 \cdot($ Half $y)=y$

