Proof of Theorem 244

The theorem to be proved is
$\operatorname{Chop}(x \oplus \underline{1})=x$
\star
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\operatorname{Chop}(x \oplus \underline{1}))=(x)]]$

Special cases of the hypothesis and previous results:

$\begin{array}{lllll}0: & \neg \operatorname{Chop}(x \oplus \underline{1})=x \quad \text { from } \quad \mathrm{H}: x & \\ 1: & \neg x \oplus \underline{1}=\epsilon \quad \text { from } \quad \underline{242 ;} ; \\ 2: & x \oplus \underline{1}=\epsilon \quad \vee & \mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{Q}(x \oplus \underline{1})) & \text { from } \quad \underline{239 ;} ; x \oplus \underline{1} \\ 3: & x \oplus \underline{1}=\epsilon & \vee & \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{R}(x \oplus \underline{1})) & \text { from } \\ \underline{239} ; x \oplus \underline{1}\end{array}$
4: $\quad(\mathrm{Q} x) \cdot(\mathrm{Q} \underline{1})=\mathrm{Q}(x \oplus \underline{1}) \quad$ from $\quad \underline{180} ; x ; \underline{1}$
5: $\quad((\mathrm{R} x) \cdot(\mathrm{Q} \underline{1}))+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad$ from $\quad \underline{180} ; x ; \underline{1}$
6: $\quad \mathrm{Q} 1=2 \quad$ from $\quad \underline{192}$
7: $\mathrm{R} \underline{1}=1 \quad$ from $\quad \underline{192}$
8: $\quad \operatorname{Half}((\mathrm{Q} x) \cdot 2)=\mathrm{Q} x \quad$ from $\quad \underline{241} ; \mathrm{Q} x$
9: $\quad \operatorname{Half}(((\mathrm{R} x) \cdot 2)+1)=\mathrm{R} x \quad$ from $\quad \underline{241} ; \mathrm{R} x$
10: $\neg \mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{Q} x \quad \vee \quad \neg \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x \quad \vee \quad \operatorname{Chop}(x \oplus \underline{1})=x \quad$ from 193; $x ; \operatorname{Chop}(x \oplus \underline{1})$

Equality substitutions:

11: $\neg \mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{Q}(x \oplus \underline{1})) \vee \mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{Q} x \quad \vee \quad \operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))=$ Qx

12: $\neg \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{R}(x \oplus \underline{1})) \vee \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x \vee \neg \operatorname{Half}(\mathrm{R}(x \oplus \underline{1}))=$ $\mathrm{R} x$

13: $\neg \mathrm{Q} \underline{1}=2 \vee \neg(\mathrm{Q} x) \cdot(\mathrm{Q} \underline{1})=\mathrm{Q}(x \oplus \underline{1}) \vee(\mathrm{Q} x) \cdot(2)=\mathrm{Q}(x \oplus \underline{1})$
14: $\neg \mathrm{Q} \underline{1}=2 \quad \vee \neg((\mathrm{R} x) \cdot(\mathrm{Q} \underline{1}))+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad((\mathrm{R} x) \cdot(2))+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1})$
15: $\neg \mathrm{R} \underline{1}=1 \quad \vee \neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee((\mathrm{R} x) \cdot 2)+(1)=\mathrm{R}(x \oplus \underline{1})$
16: $\neg \mathrm{Q}(x \oplus \underline{1})=(\mathrm{Q} x) \cdot 2 \quad \vee \quad \operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))=\mathrm{Q} x \quad \vee \quad \neg \operatorname{Half}((\mathrm{Q} x) \cdot 2)=\mathrm{Q} x$

17: $\neg((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \vee \neg \operatorname{Half}(((\mathrm{R} x) \cdot 2)+1)=\mathrm{R} x \quad \vee \quad \operatorname{Half}(\mathrm{R}(x \oplus \underline{1}))=\mathrm{R} x$

Inferences:

18: $\quad \neg \mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{Q} x \quad \vee \quad \neg \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x \quad$ by $0: \neg \operatorname{Chop}(x \oplus \underline{1})=x$
10: $\neg \mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{Q} x \quad \vee \quad \neg \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x \quad \vee \quad \operatorname{Chop}(x \oplus \underline{1})=x$
19: $\mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{Q}(x \oplus \underline{1})) \quad$ by
1: $\neg x \oplus 1=\epsilon$
$2: x \oplus \underline{1}=\epsilon \quad \vee \quad \mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))$
20: $\quad \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{R}(x \oplus \underline{1})) \quad$ by
1: $\neg x \oplus \underline{1}=\epsilon$
3: $x \oplus \underline{1}=\epsilon \quad \vee \quad \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{R}(x \oplus \underline{1}))$
21: $\quad \neg \mathrm{Q} 1=2 \quad \vee \quad \mathrm{Q}(x \oplus \underline{1})=(\mathrm{Q} x) \cdot 2 \quad$ by
4: $(\mathrm{Q} x) \cdot(\mathrm{Q} \underline{1})=\mathrm{Q}(x \oplus \underline{1})$
13: $\neg \mathrm{Q} \underline{1}=2 \quad \vee \neg(\mathrm{Q} x) \cdot(\mathrm{Q} \underline{1})=\mathrm{Q}(x \oplus \underline{1}) \quad \vee \quad \mathrm{Q}(x \oplus \underline{1})=(\mathrm{Q} x) \cdot 2$
22: $\neg \mathrm{Q} \underline{1}=2 \quad \vee \quad((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad$ by
5: $((\mathrm{R} x) \cdot(\mathrm{Q} \underline{1}))+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1})$
14: $\neg \mathrm{Q} \underline{1}=2 \vee \neg((\mathrm{R} x) \cdot(\mathrm{Q} \underline{1}))+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1})$
23: $\quad \mathrm{Q}(x \oplus \underline{1})=(\mathrm{Q} x) \cdot 2 \quad$ by
6: $\mathrm{Q} 1=2$
21: $\neg \mathrm{Q} \underline{1}=2 \quad \vee \quad \mathrm{Q}(x \oplus \underline{1})=(\mathrm{Q} x) \cdot 2$
24: $\quad((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad$ by
6: $\mathrm{Q} 1=2$
22: $\neg \mathrm{Q} \underline{1}=2 \quad \vee \quad((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1})$
25: $\quad \neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \quad$ by
7: $\mathrm{R} \underline{1}=1$
15: $\neg \mathrm{R} \underline{1}=1 \quad \vee \neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1})$
26: $\quad \neg \mathrm{Q}(x \oplus \underline{1})=(\mathrm{Q} x) \cdot 2 \quad \vee \quad \operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))=\mathrm{Q} x \quad$ by
8: $\operatorname{Half}((\mathrm{Q} x) \cdot 2)=\mathrm{Q} x$
16: $\neg \mathrm{Q}(x \oplus \underline{1})=(\mathrm{Q} x) \cdot 2 \quad \vee \quad \operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))=\mathrm{Q} x \quad \vee \quad \neg \operatorname{Half}((\mathrm{Q} x) \cdot 2)=\mathrm{Q} x$
27: $\neg((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad \operatorname{Half}(\mathrm{R}(x \oplus \underline{1}))=\mathrm{R} x \quad$ by
9: $\operatorname{Half}(((\mathrm{R} x) \cdot 2)+1)=\mathrm{R} x$
17: $\neg((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \vee \neg \operatorname{Half}(((\mathrm{R} x) \cdot 2)+1)=\mathrm{R} x \quad \vee \quad \operatorname{Half}(\mathrm{R}(x \oplus \underline{1}))=\mathrm{R} x$

28: $\quad \mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{Q} x \quad \vee \quad \neg \operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))=\mathrm{Q} x \quad$ by
19: $\mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))$
11: $\neg \mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{Q}(x \oplus \underline{1})) \quad \vee \quad \mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{Q} x \quad \vee$
$\neg \operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))=\mathrm{Q} x$
29: $\quad \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x \quad \vee \quad \neg \operatorname{Half}(\mathrm{R}(x \oplus \underline{1}))=\mathrm{R} x \quad$ by
20: $\mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{R}(x \oplus \underline{1}))$
12: $\neg \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\operatorname{Half}(\mathrm{R}(x \oplus \underline{1})) \vee \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x \quad \vee \quad \neg \operatorname{Half}(\mathrm{R}(x \oplus$
1)) $=R x$

30: $\quad \operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))=\mathrm{Q} x \quad$ by
23: $\mathrm{Q}(x \oplus \underline{1})=(\mathrm{Q} x) \cdot 2$
26: $\neg \mathrm{Q}(x \oplus \underline{1})=(\mathrm{Q} x) \cdot 2 \vee \operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))=\mathrm{Q} x$
31: $\quad((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \quad$ by
24: $((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1})$
25: $\neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1})$
32: $\mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{Q} x \quad$ by
30: $\operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))=\mathrm{Q} x$
28: $\mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{Q} x \quad \vee \quad \neg \operatorname{Half}(\mathrm{Q}(x \oplus \underline{1}))=\mathrm{Q} x$
33: $\quad \operatorname{Half}(\mathrm{R}(x \oplus \underline{1}))=\mathrm{R} x \quad$ by
31: $((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1})$
27: $\neg((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad \operatorname{Half}(\mathrm{R}(x \oplus \underline{1}))=\mathrm{R} x$
34: $\neg \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x \quad$ by
32: $\mathrm{Q}(\operatorname{Chop}(x \oplus 1))=\mathrm{Q} x$
18: $\neg \mathrm{Q}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{Q} x \quad \vee \quad \neg \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x$
35: $\quad \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x \quad$ by
33: $\operatorname{Half}(\mathrm{R}(x \oplus \underline{1}))=\mathrm{R} x$
29: $\mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x \quad \vee \quad \neg \operatorname{Half}(\mathrm{R}(x \oplus \underline{1}))=\mathrm{R} x$
36: $Q E A$ by
34: $\neg \mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x$
35: $\mathrm{R}(\operatorname{Chop}(x \oplus \underline{1}))=\mathrm{R} x$

