Proof of Theorem 242

The theorem to be proved is
$x \oplus \underline{0} \neq \epsilon \quad \& \quad x \oplus \underline{1} \neq \epsilon$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x \oplus \underline{0})=(\epsilon) \quad \vee \quad(x \oplus \underline{1})=(\epsilon)]]$

Special cases of the hypothesis and previous results:

$0:$	$x \oplus \underline{0}=\epsilon$	\vee	$x \oplus \underline{1}=\epsilon$	from
$1:$	$\neg x \oplus \underline{0}=\epsilon$	\vee	$\underline{0}=\epsilon$	from
	$\underline{204} ; x ; \underline{0}$			
$2:$	$\neg x \oplus \underline{1}=\epsilon$	\vee	$\underline{1}=\epsilon$	from
$\underline{204} ; x ; \underline{1}$				
$3:$	$\neg \underline{0}=\epsilon$	from	$\underline{188}$	
$4:$	$\neg \underline{1}=\epsilon$	from	$\underline{188}$	

Inferences:

5: $\quad \neg x \oplus \underline{0}=\epsilon \quad$ by
3: $\neg \underline{0}=\epsilon$
1: $\neg x \oplus \underline{0}=\epsilon \quad \vee \quad \underline{0}=\epsilon$
6: $\quad \neg x \oplus \underline{1}=\epsilon \quad$ by
4: $\neg \underline{1}=\epsilon$
$2: \neg x \oplus \underline{1}=\epsilon \quad \vee \quad \underline{1}=\epsilon$
7: $\quad x \oplus \underline{1}=\epsilon \quad$ by
5: $\neg x \oplus \underline{0}=\epsilon$
$0: x \oplus \underline{0}=\epsilon \quad \vee \quad x \oplus \underline{1}=\epsilon$
8: $Q E A$ by
6: $\neg x \oplus \underline{1}=\epsilon$
$7: x \oplus \underline{1}=\epsilon$

