Proof of Theorem 242

The theorem to be proved is

$$x \oplus \underline{0} \neq \epsilon$$
 & $x \oplus \underline{1} \neq \epsilon$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(x \oplus \underline{0}) = (\epsilon) \lor (x \oplus \underline{1}) = (\epsilon)]]$$

Special cases of the hypothesis and previous results:

0:
$$x \oplus \underline{0} = \epsilon \quad \lor \quad x \oplus \underline{1} = \epsilon \quad \text{from } H:x$$

1:
$$\neg x \oplus \underline{0} = \epsilon \quad \lor \quad \underline{0} = \epsilon \quad \text{from} \quad \underline{204}; x; \underline{0}$$

2:
$$\neg x \oplus \underline{1} = \epsilon \quad \lor \quad \underline{1} = \epsilon \quad \text{from} \quad \underline{204}; x; \underline{1}$$

3:
$$\neg \underline{0} = \epsilon$$
 from $\underline{188}$

4:
$$\neg \underline{1} = \epsilon$$
 from $\underline{188}$

Inferences:

5:
$$\neg x \oplus \underline{0} = \epsilon$$
 by

$$3: \neg \underline{0} = \epsilon$$

1:
$$\neg x \oplus \underline{0} = \epsilon \quad \lor \quad \underline{0} = \epsilon$$

6:
$$\neg x \oplus \underline{1} = \epsilon$$
 by

4:
$$\neg \underline{1} = \epsilon$$

2:
$$\neg x \oplus \underline{1} = \epsilon \quad \lor \quad \underline{1} = \epsilon$$

7:
$$x \oplus \underline{1} = \epsilon$$
 by

5:
$$\neg x \oplus \underline{0} = \epsilon$$

$$0: \ \underline{x} \oplus \underline{0} = \epsilon \quad \lor \quad x \oplus \underline{1} = \epsilon$$

8:
$$QEA$$
 by

6:
$$\neg x \oplus \underline{1} = \epsilon$$

7:
$$x \oplus \underline{1} = \epsilon$$