Proof of Theorem 241b

The theorem to be proved is

$$Half(0 \cdot 2) = 0$$
 & $Half(0 \cdot 2 + 1) = 0$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (Half(0 \cdot 2)) = (0) \lor \neg (Half((0 \cdot 2) + 1)) = (0)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg \operatorname{Half}(0 \cdot 2) = 0 \quad \lor \quad \neg \operatorname{Half}((0 \cdot 2) + 1) = 0 \quad \text{from} \quad H$$

1:
$$0 \cdot 2 = 0$$
 from $103;2$

2:
$$0 + 1 = 1$$
 from $97;1$

3:
$$Half0 = 0$$
 from 221

4:
$$Half1 = 0$$
 from 221

Equality substitutions:

5:
$$\neg 0 \cdot 2 = 0 \lor \operatorname{Half}(0 \cdot 2) = 0 \lor \neg \operatorname{Half}(0) = 0$$

6:
$$\neg 0 \cdot 2 = 0 \lor \operatorname{Half}((0 \cdot 2) + 1) = 0 \lor \neg \operatorname{Half}((0) + 1) = 0$$

7:
$$\neg 0 + 1 = 1 \lor \operatorname{Half}(0 + 1) = 0 \lor \neg \operatorname{Half}(1) = 0$$

Inferences:

8:
$$Half(0 \cdot 2) = 0 \quad \lor \quad \neg Half(0 \cdot 2) = 0$$
 by

1:
$$0 \cdot 2 = 0$$

5:
$$\neg 0 \cdot 2 = 0 \quad \lor \quad \text{Half}(0 \cdot 2) = 0 \quad \lor \quad \neg \text{Half}(0 \cdot 2) = 0$$

9:
$$Half((0 \cdot 2) + 1) = 0 \quad \lor \quad \neg Half(0 + 1) = 0$$
 by

1:
$$0 \cdot 2 = 0$$

6:
$$\neg 0 \cdot 2 = 0 \quad \lor \quad \text{Half}((0 \cdot 2) + 1) = 0 \quad \lor \quad \neg \text{Half}(0 + 1) = 0$$

10:
$$Half(0+1) = 0 \lor \neg Half1 = 0$$
 by

$$2: 0+1=1$$

7:
$$\neg 0 + 1 = 1 \lor \text{Half}(0 + 1) = 0 \lor \neg \text{Half}1 = 0$$

11:
$$Half(0 \cdot 2) = 0$$
 by

3:
$$Half0 = 0$$

8:
$$Half(0 \cdot 2) = 0 \quad \lor \quad \neg \frac{Half0}{} = 0$$

12:
$$Half(0+1) = 0$$
 by

4:
$$Half1 = 0$$

10:
$$Half(0+1) = 0 \quad \lor \quad \neg \frac{Half1}{} = 0$$

13:
$$\neg \text{Half}((0 \cdot 2) + 1) = 0$$
 by

11:
$$Half(0 \cdot 2) = 0$$

0:
$$\neg \operatorname{Half}(0 \cdot 2) = 0 \quad \lor \quad \neg \operatorname{Half}((0 \cdot 2) + 1) = 0$$

14:
$$Half((0 \cdot 2) + 1) = 0$$
 by

12:
$$Half(0+1) = 0$$

9:
$$Half((0 \cdot 2) + 1) = 0 \quad \lor \quad \neg \frac{Half(0 + 1)}{} = 0$$

15:
$$QEA$$
 by

13:
$$\neg \text{Half}((0 \cdot 2) + 1) = 0$$

14:
$$Half((0 \cdot 2) + 1) = 0$$