Proof of Theorem 239

The theorem to be proved is
$x \neq \epsilon \quad \rightarrow \quad$ Q Chop $x=$ Half $\mathrm{Q} x \quad \& \quad$ R Chop $x=$ Half $\mathrm{R} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
$(\mathrm{H}) \quad[[\neg(x)=(\epsilon)] \quad \& \quad[\neg(\mathrm{Q}(\operatorname{Chop} x))=(\operatorname{Half}(\mathrm{Q} x)) \quad \vee \quad \neg(\mathrm{R}(\operatorname{Chop} x))=(\operatorname{Half}(\mathrm{R} x))]]$

Special cases of the hypothesis and previous results:

0: $\neg \epsilon=x \quad$ from $\quad \mathrm{H}: x$
1: $\neg \mathrm{Q}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{Q} x) \quad \vee \quad \neg \mathrm{R}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{R} x) \quad$ from $\quad \mathrm{H}: x$
2: $\neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x) \quad \vee \quad \neg \operatorname{Half}(\mathrm{Q} x)$ is a power of two $\quad \vee$
$\neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \vee \mathrm{Q}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{Q} x) \quad$ from $\quad \underline{171} ; \operatorname{Chop} x ; \operatorname{Half}(\mathrm{Q} x) ; \operatorname{Half}(\mathrm{R} x)$
3: $\neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x) \quad \vee \quad \neg \operatorname{Half}(\mathrm{Q} x)$ is a power of two $\quad \vee$
$\neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \vee \mathrm{R}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{R} x) \quad$ from $\quad 171 ; \operatorname{Chop} x ; \operatorname{Half}(\mathrm{Q} x) ; \operatorname{Half}(\mathrm{R} x)$
4: $\quad \epsilon=x \quad \vee \quad(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x) \quad$ from $\quad \underline{231} ; x$
5: $\quad \epsilon=x \quad \vee \quad \operatorname{Half}(\mathrm{Q} x)$ is a power of two from $\underline{238 ;} x$
6: $\neg \mathrm{Q} x$ is a power of two $\vee \mathrm{Q} x=1 \vee \operatorname{Parity}(\mathrm{Q} x)=0 \quad$ from $\quad 236 ; \mathrm{Q} x$
7: $\mathrm{Q} x$ is a power of two from $166 ; x$
8: $\mathrm{R} x<\mathrm{Q} x$ from $166 ; x$
9: $\neg \mathrm{Q} x=1 \quad \vee \epsilon=x \quad$ from $\quad 203 ; x$
10: $\neg \operatorname{Parity}(\mathrm{Q} x)=0 \quad \vee \neg \mathrm{R} x<\mathrm{Q} x \quad \vee \quad \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \quad$ from $\quad 233 ; \mathrm{Q} x ; \mathrm{R} x$

Inferences:

11: $\quad(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x) \quad$ by
0 : $\neg \epsilon=x$
4: $\epsilon=x \quad \vee \quad(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x)$
12: $\operatorname{Half}(\mathrm{Q} x)$ is a power of two by
0: $\neg \epsilon=x$
5: $\epsilon=x \vee \operatorname{Half}(\mathrm{Q} x)$ is a power of two
13: $\neg \mathrm{Q} x=1 \quad$ by
0: $\neg \epsilon=x$
9: $\neg \mathrm{Q} x=1 \quad \vee \quad \epsilon=x$

14: $\quad \mathrm{Q} x=1 \quad \vee \quad \operatorname{Parity}(\mathrm{Q} x)=0 \quad$ by
7: $\mathrm{Q} x$ is a power of two
6: $\neg \mathrm{Q} x$ is a power of two $\vee \mathrm{Q} x=1 \quad \vee \operatorname{Parity}(\mathrm{Q} x)=0$
15: $\neg \operatorname{Parity}(\mathrm{Q} x)=0 \quad \vee \quad \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \quad$ by
8: $\mathrm{R} x<\mathrm{Q} x$
10: $\neg \operatorname{Parity}(\mathrm{Q} x)=0 \quad \vee \neg \mathrm{R} x<\mathrm{Q} x \quad \vee \quad \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x)$
16: $\neg \operatorname{Half}(\mathrm{Q} x)$ is a power of two $\vee \neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \vee \mathrm{Q}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{Q} x)$ by

11: $(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x)$
2: $\neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x) \quad \vee \quad \neg \operatorname{Half}(\mathrm{Q} x)$ is a power of two $\vee \neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \quad \vee \quad \mathrm{Q}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{Q} x)$

17: $\neg \operatorname{Half}(\mathrm{Q} x)$ is a power of two $\vee \neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \vee \mathrm{R}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{R} x)$ by

11: $(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x)$
3: $\neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x) \quad \vee \quad \neg \operatorname{Half}(\mathrm{Q} x)$ is a power of two
$\vee \neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \quad \vee \quad \mathrm{R}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{R} x)$
18: $\neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \quad \vee \quad \mathrm{Q}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{Q} x) \quad$ by
12: $\operatorname{Half}(\mathrm{Q} x)$ is a power of two
16: $\neg \operatorname{Half}(\mathrm{Q} x)$ is a power of two $\vee \neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \quad \vee \quad \mathrm{Q}(\operatorname{Chop} x)=$ Half($\mathrm{Q} x$)

19: $\neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \quad \vee \quad \mathrm{R}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{R} x) \quad$ by
12: $\operatorname{Half}(\mathrm{Q} x)$ is a power of two
17: $\neg \operatorname{Half}(\mathrm{Q} x)$ is a power of two $\quad \vee \neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \quad \vee \quad \mathrm{R}(\operatorname{Chop} x)=$ $\operatorname{Half}(\mathrm{R} x)$

20: $\quad \operatorname{Parity}(\mathrm{Q} x)=0 \quad$ by
13: $\neg \mathrm{Q} x=1$
14: $\mathrm{Q} x=1 \quad \vee \quad \operatorname{Parity}(\mathrm{Q} x)=0$
21: $\quad \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \quad$ by
20: $\operatorname{Parity}(\mathrm{Q} x)=0$
15: $\neg \operatorname{Parity}(\mathrm{Q} x)=0 \quad \vee \quad \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x)$
22: $\quad \mathrm{Q}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{Q} x) \quad$ by
21: $\operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x)$
18: $\neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \vee \mathrm{Q}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{Q} x)$

23: $\quad \mathrm{R}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{R} x) \quad$ by
21: $\operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x)$
19: $\neg \operatorname{Half}(\mathrm{R} x)<\operatorname{Half}(\mathrm{Q} x) \vee \mathrm{R}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{R} x)$
24: $\quad \neg \mathrm{R}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{R} x) \quad$ by
22: $\mathrm{Q}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{Q} x)$
1: $\neg \mathrm{Q}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{Q} x) \vee \neg \mathrm{R}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{R} x)$
25: $Q E A$ by
23: $\mathrm{R}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{R} x)$
24: $\neg \mathrm{R}(\operatorname{Chop} x)=\operatorname{Half}(\mathrm{R} x)$

