Proof of Theorem 238

The theorem to be proved is
$x \neq \epsilon \quad \rightarrow \quad$ Half $\mathrm{Q} x$ is a power of two
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(\epsilon)] \quad \& \quad[\neg(\operatorname{Half}(\mathrm{Q} x))$ is a power of two $]]$

Special cases of the hypothesis and previous results:

0: $\neg \epsilon=x \quad$ from $\quad \mathrm{H}: x$
1: $\neg \operatorname{Half}(\mathrm{Q} x)$ is a power of two from $\mathrm{H}: x$
2: $\mathrm{Q} x$ is a power of two from $158 ; x$
3: $\neg \mathrm{Q} x$ is a power of two $\vee 2 \uparrow y=\mathrm{Q} x \quad$ from $\quad \underline{129}{ }^{\rightarrow} ; \mathrm{Q} x: y$
4: $2 \uparrow 0=1 \quad$ from $\quad \underline{126} ; 2$
5: $\neg \mathrm{Q} x=1 \quad \vee \epsilon=x \quad$ from $\quad 203 ; x$
6: $0=y \quad \vee \operatorname{Half}(2 \uparrow y)$ is a power of two from $\underline{237} ; y$

Equality substitutions:

7: $\neg 2 \uparrow y=\mathrm{Q} x \quad \vee \neg \operatorname{Half}(2 \uparrow y)$ is a power of two $\vee \operatorname{Half}(\mathrm{Q} x)$ is a power of two
8: $\quad \neg 2 \uparrow y=\mathrm{Q} x \quad \vee \quad \neg 2 \uparrow y=1 \quad \vee \quad \mathrm{Q} x=1$
9: $\neg 0=y \quad \vee \quad \neg 2 \uparrow 0=1 \quad \vee \quad 2 \uparrow y=1$

Inferences:

10: $\neg \mathrm{Q} x=1 \quad$ by
0: $\neg \epsilon=x$
5: $\neg \mathrm{Q} x=1 \quad \vee \quad \epsilon=x$
11: $\neg 2 \uparrow y=\mathrm{Q} x \vee \neg \operatorname{Half}(2 \uparrow y)$ is a power of two by
1: $\neg \operatorname{Half}(\mathrm{Q} x)$ is a power of two
7: $\neg 2 \uparrow y=\mathrm{Q} x \quad \vee \neg \operatorname{Half}(2 \uparrow y)$ is a power of two $\vee \operatorname{Half}(\mathrm{Q} x)$ is a power of two
12: $\quad 2 \uparrow y=\mathrm{Q} x \quad$ by
2: $\mathrm{Q} x$ is a power of two
3: $\neg \mathrm{Q} x$ is a power of two $\vee 2 \uparrow y=\mathrm{Q} x$

13: $\neg 0=y \quad \vee \quad 2 \uparrow y=1 \quad$ by
4: $2 \uparrow 0=1$
9: $\neg 0=y \quad \vee \quad \neg 2 \uparrow 0=1 \quad \vee \quad 2 \uparrow y=1$
14: $\quad \neg 2 \uparrow y=\mathrm{Q} x \quad \vee \quad \neg 2 \uparrow y=1 \quad$ by
10: $\neg \mathrm{Q} x=1$
$8: \neg 2 \uparrow y=\mathrm{Q} x \quad \vee \quad \neg 2 \uparrow y=1 \quad \vee \quad \mathrm{Q} x=1$
15: $\neg \operatorname{Half}(2 \uparrow y)$ is a power of two by
12: $2 \uparrow y=\mathrm{Q} x$
11: $\neg 2 \uparrow y=\mathrm{Q} x \quad \vee \quad \neg \operatorname{Half}(2 \uparrow y)$ is a power of two
16: $\quad \neg 2 \uparrow y=1 \quad$ by
12: $2 \uparrow y=\mathrm{Q} x$
14: $\neg 2 \uparrow y=\mathrm{Q} x \quad \vee \quad \neg 2 \uparrow y=1$
17: $0=y \quad$ by
15: $\neg \operatorname{Half}(2 \uparrow y)$ is a power of two
6: $0=y \quad \vee \quad \operatorname{Half}(2 \uparrow y)$ is a power of two
18: $\neg 0=y \quad$ by
16: $\neg 2 \uparrow y=1$
13: $\neg 0=y \quad \vee \quad 2 \uparrow y=1$
19: $Q E A$ by
17: $0=y$
18: $\neg 0=y$

