Proof of Theorem 238

The theorem to be proved is

 $x \neq \epsilon \quad \rightarrow \quad \text{Half } \mathbf{Q}x \text{ is a power of two}$

Suppose the theorem does not hold. Then, with the variables held fixed, (H) $[[\neg (x) = (\epsilon)] \& [\neg (Half(Qx)) \text{ is a power of two}]]$

Special cases of the hypothesis and previous results:

0:	$\neg \epsilon = x$ from H:x	
1:	\neg Half(Qx) is a power of two from H:x	
2:	$\mathbf{Q}x$ is a power of two from <u>158</u> ; x	
3:	$\neg Qx$ is a power of two $\lor 2 \uparrow y = Qx$ from	$\underline{129}^{\Rightarrow}; Qx:y$
4:	$2 \uparrow 0 = 1$ from <u>126</u> ;2	
5:	$\neg Qx = 1 \lor \epsilon = x \qquad \text{from} \underline{203}; x$	
6:	$0 = y \lor \text{Half}(2 \uparrow y) \text{ is a power of two} \qquad \text{from}$	<u>237;</u> y

Equality substitutions:

7: $\neg 2 \uparrow y = Qx \lor \neg \operatorname{Half}(2 \uparrow y)$ is a power of two \lor $\operatorname{Half}(Qx)$ is a power of two 8: $\neg 2 \uparrow y = Qx \lor \neg 2 \uparrow y = 1 \lor Qx = 1$ 9: $\neg 0 = y \lor \neg 2 \uparrow 0 = 1 \lor 2 \uparrow y = 1$

Inferences:

- 10: $\neg Qx = 1$ by 0: $\neg \epsilon = x$ 5: $\neg Qx = 1 \lor \epsilon = x$
- 11: $\neg 2 \uparrow y = Qx \lor \neg \operatorname{Half}(2 \uparrow y)$ is a power of two by 1: $\neg \operatorname{Half}(Qx)$ is a power of two 7: $\neg 2 \uparrow y = Qx \lor \neg \operatorname{Half}(2 \uparrow y)$ is a power of two $\lor \operatorname{Half}(Qx)$ is a power of two
- 12: $2 \uparrow y = Qx$ by 2: Qx is a power of two 3: $\neg Qx$ is a power of two $\lor 2 \uparrow y = Qx$

13:
$$\neg 0 = y \lor 2 \uparrow y = 1$$
 by
4: $2 \uparrow 0 = 1$
9: $\neg 0 = y \lor \neg 2 \uparrow 0 = 1 \lor 2 \uparrow y = 1$
14: $\neg 2 \uparrow y = Qx \lor \neg 2 \uparrow y = 1$ by
10: $\neg Qx = 1$
8: $\neg 2 \uparrow y = Qx \lor \neg 2 \uparrow y = 1 \lor Qx = 1$
15: \neg Half $(2 \uparrow y)$ is a power of two by
12: $2 \uparrow y = Qx$
11: $\neg 2 \uparrow y = Qx$ $\lor \neg$ Half $(2 \uparrow y)$ is a power of two
16: $\neg 2 \uparrow y = 1$ by
12: $2 \uparrow y = Qx$
14: $\neg 2 \uparrow y = Qx$ $\lor \neg 2 \uparrow y = 1$
17: $0 = y$ by
15: \neg Half $(2 \uparrow y)$ is a power of two
6: $0 = y \lor$ Half $(2 \uparrow y)$ is a power of two
18: $\neg 0 = y$ by
16: $\neg 2 \uparrow y = 1$
13: $\neg 0 = y \lor 2 \uparrow y = 1$
19: QEA by
17: $0 = y$
18: $\neg 0 = y$