Proof of Theorem 237

The theorem to be proved is

$$x \neq 0 \rightarrow \operatorname{Half}(2 \uparrow x)$$
 is a power of two

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[\neg (x) = (0)]$$
 & $[\neg (\operatorname{Half}(2 \uparrow x)) \text{ is a power of two}]$

Special cases of the hypothesis and previous results:

- 0: $\neg 0 = x$ from H;x
- 1: $\neg \text{Half}(2 \uparrow x)$ is a power of two from H;x
- 2: $0 = x \lor S(Px) = x$ from 22;x
- 3: $Half(2 \uparrow (S(Px))) = 2 \uparrow (Px)$ from <u>235;</u>Px
- 4: $2 \uparrow (Px)$ is a power of two from <u>131;</u>Px

Equality substitutions:

5:
$$\neg S(Px) = x \lor \neg Half(2 \uparrow (S(Px))) = 2 \uparrow (Px) \lor Half(2 \uparrow (x)) = 2 \uparrow (Px)$$

6: $\neg \text{Half}(2 \uparrow x) = 2 \uparrow (Px) \lor \text{Half}(2 \uparrow x)$ is a power of two $\lor \neg 2 \uparrow (Px)$ is a power of two

Inferences:

- 7: S(Px) = x by
 - $0: \neg 0 = x$
 - 2: $0 = x \lor S(Px) = x$
- 8: $\neg \operatorname{Half}(2 \uparrow x) = 2 \uparrow (Px) \lor \neg 2 \uparrow (Px)$ is a power of two by
 - 1: $\neg \operatorname{Half}(2 \uparrow x)$ is a power of two
- 6: $\neg \text{Half}(2 \uparrow x) = 2 \uparrow (Px) \lor \text{Half}(2 \uparrow x) \text{ is a power of two} \lor \neg 2 \uparrow (Px) \text{ is a power of two}$
- 9: $\neg S(Px) = x \lor Half(2 \uparrow x) = 2 \uparrow (Px)$ by
 - 3: $Half(2 \uparrow (S(Px))) = 2 \uparrow (Px)$
 - 5: $\neg S(Px) = x \lor \neg Half(2 \uparrow (S(Px))) = 2 \uparrow (Px) \lor Half(2 \uparrow x) = 2 \uparrow (Px)$

10:
$$\neg \operatorname{Half}(2 \uparrow x) = 2 \uparrow (Px)$$
 by

4: $2 \uparrow (Px)$ is a power of two

8:
$$\neg \operatorname{Half}(2 \uparrow x) = 2 \uparrow (Px) \lor \neg 2 \uparrow (Px)$$
 is a power of two

11:
$$\operatorname{Half}(2 \uparrow x) = 2 \uparrow (Px)$$
 by

7:
$$S(Px) = x$$

9:
$$\neg S(Px) = x \lor Half(2 \uparrow x) = 2 \uparrow (Px)$$

12:
$$QEA$$
 by

10:
$$\neg \operatorname{Half}(2 \uparrow x) = 2 \uparrow (Px)$$

11:
$$\operatorname{Half}(2 \uparrow x) = 2 \uparrow (Px)$$