Proof of Theorem 237

The theorem to be proved is $x \neq 0 \quad \rightarrow \quad \operatorname{Half}(2 \uparrow x)$ is a power of two

Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(0)] \quad \& \quad[\neg(\operatorname{Half}(2 \uparrow x))$ is a power of two $]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg 0=x \quad$ from $\quad \mathrm{H} ; x$
1: $\neg \operatorname{Half}(2 \uparrow x)$ is a power of two from $\mathrm{H} ; x$
2: $0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x \quad$ from $\quad \underline{22 ;} x$
3: $\quad \operatorname{Half}(2 \uparrow(\mathrm{~S}(\mathrm{P} x)))=2 \uparrow(\mathrm{P} x) \quad$ from $\quad 235 ; \mathrm{P} x$
4: $2 \uparrow(\mathrm{P} x)$ is a power of two from $131 ; \mathrm{P} x$

Equality substitutions:

5: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \operatorname{Half}(2 \uparrow(\mathrm{~S}(\mathrm{P} x)))=2 \uparrow(\mathrm{P} x) \quad \vee \quad \operatorname{Half}(2 \uparrow(x))=2 \uparrow(\mathrm{P} x)$
6: $\neg \operatorname{Half}(2 \uparrow x)=2 \uparrow(\mathrm{P} x) \quad \vee \quad \operatorname{Half}(2 \uparrow x)$ is a power of two $\vee \neg 2 \uparrow(\mathrm{P} x)$ is a power of two

Inferences:

7: $\quad \mathrm{S}(\mathrm{P} x)=x \quad$ by
0 : $\neg 0=x$
2: $0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x$
8: $\neg \operatorname{Half}(2 \uparrow x)=2 \uparrow(\mathrm{P} x) \vee \neg 2 \uparrow(\mathrm{P} x)$ is a power of two by
1: $\neg \operatorname{Half}(2 \uparrow x)$ is a power of two
6: $\neg \operatorname{Half}(2 \uparrow x)=2 \uparrow(\mathrm{P} x) \quad \vee \quad \operatorname{Half}(2 \uparrow x)$ is a power of two $\vee \neg 2 \uparrow(\mathrm{P} x)$ is a power of two

9: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \operatorname{Half}(2 \uparrow x)=2 \uparrow(\mathrm{P} x) \quad$ by
3: $\operatorname{Half}(2 \uparrow(\mathrm{~S}(\mathrm{P} x)))=2 \uparrow(\mathrm{P} x)$
5: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \operatorname{Half}(2 \uparrow(\mathrm{~S}(\mathrm{P} x)))=2 \uparrow(\mathrm{P} x) \quad \vee \quad \operatorname{Half}(2 \uparrow x)=2 \uparrow(\mathrm{P} x)$

10: $\quad \neg \operatorname{Half}(2 \uparrow x)=2 \uparrow(\mathrm{P} x) \quad$ by
4: $2 \uparrow(\mathrm{P} x)$ is a power of two
8: $\neg \operatorname{Half}(2 \uparrow x)=2 \uparrow(\mathrm{P} x) \vee \neg 2 \uparrow(\mathrm{P} x)$ is a power of two
11: $\quad \operatorname{Half}(2 \uparrow x)=2 \uparrow(\mathrm{P} x) \quad$ by
7: $\mathrm{S}(\mathrm{P} x)=x$
9: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \operatorname{Half}(2 \uparrow x)=2 \uparrow(\mathrm{P} x)$
12: $Q E A \quad$ by
10: $\neg \operatorname{Half}(2 \uparrow x)=2 \uparrow(\mathrm{P} x)$
11: $\operatorname{Half}(2 \uparrow x)=2 \uparrow(\mathrm{P} x)$

