Proof of Theorem 236

The theorem to be proved is
q is a power of two $\& q \neq 1 \rightarrow$ Parity $q=0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(q)$ is a power of two $] \quad \& \quad[\neg(q)=(1)] \quad \& \quad[\neg(\operatorname{Parity} q)=(0)]]$

Special cases of the hypothesis and previous results:

0: q is a power of two from $\mathrm{H}: q$
1: $\quad \neg 1=q \quad$ from $\quad \mathrm{H}: q$
2: $\neg \operatorname{Parity} q=0 \quad$ from $\mathrm{H}: q$
3: $\neg q$ is a power of two $\vee 2 \uparrow x=q \quad$ from $\quad \underline{129} \rightarrow ; q: x$
4: $\quad 2 \uparrow 0=1 \quad$ from $\quad 126 ; 2 ; x$
5: $0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x \quad$ from $\quad \underline{22} ; x$
6: $\quad \operatorname{Parity}(2 \uparrow(\mathrm{~S}(\mathrm{P} x)))=0 \quad$ from $\quad 234 ; \mathrm{P} x$

Equality substitutions:

7: $\quad \neg 2 \uparrow x=q \quad \vee \quad \neg \operatorname{Parity}(2 \uparrow x)=0 \quad \vee \quad \operatorname{Parity}(q)=0$
8: $\quad \neg 2 \uparrow 0=1 \quad \vee \quad \neg 2 \uparrow 0=q \quad \vee \quad 1=q$
9: $\quad \neg=x \quad \vee \quad 2 \uparrow 0=q \quad \vee \quad \neg 2 \uparrow x=q$
10: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \operatorname{Parity}(2 \uparrow(\mathrm{~S}(\mathrm{P} x)))=0 \quad \vee \quad \operatorname{Parity}(2 \uparrow(x))=0$

Inferences:

11: $\quad 2 \uparrow x=q \quad$ by
0: q is a power of two
3: $\neg q$ is a power of two $\vee 2 \uparrow x=q$
12: $\quad \neg 2 \uparrow 0=1 \quad \vee \quad \neg 2 \uparrow 0=q \quad$ by
1: $\neg 1=q$
8: $\neg 2 \uparrow 0=1 \quad \vee \quad \neg 2 \uparrow 0=q \quad \vee \quad 1=q$

13: $\neg 2 \uparrow x=q \quad \vee \quad \neg \operatorname{Parity}(2 \uparrow x)=0 \quad$ by
2: \neg Parity $q=0$
7: $\neg 2 \uparrow x=q \quad \vee \quad \neg \operatorname{Parity}(2 \uparrow x)=0 \quad \vee \quad \operatorname{Parity} q=0$
14: $\quad \neg 2 \uparrow 0=q \quad$ by
4: $2 \uparrow 0=1$
12: $\neg 2 \uparrow 0=1 \quad \vee \quad \neg 2 \uparrow 0=q$
15: $\quad \neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \operatorname{Parity}(2 \uparrow x)=0 \quad$ by
6: $\operatorname{Parity}(2 \uparrow(\mathrm{~S}(\mathrm{P} x)))=0$
10: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \neg \operatorname{Parity}(2 \uparrow(\mathrm{~S}(\mathrm{P} x)))=0 \quad \vee \quad \operatorname{Parity}(2 \uparrow x)=0$
16: $\quad \neg 0=x \quad \vee \quad 2 \uparrow 0=q \quad$ by
11: $2 \uparrow x=q$
9: $\neg 0=x \quad \vee \quad 2 \uparrow 0=q \quad \vee \quad \neg 2 \uparrow x=q$
17: $\quad \neg \operatorname{Parity}(2 \uparrow x)=0 \quad$ by
11: $2 \uparrow x=q$
13: $\neg 2 \uparrow x=q \quad \vee \quad \neg \operatorname{Parity}(2 \uparrow x)=0$
18: $\neg 0=x \quad$ by
14: $\neg 2 \uparrow 0=q$
16: $\neg 0=x \quad \vee \quad 2 \uparrow 0=q$
19: $\neg \mathrm{S}(\mathrm{P} x)=x \quad$ by
17: $\neg \operatorname{Parity}(2 \uparrow x)=0$
15: $\neg \mathrm{S}(\mathrm{P} x)=x \quad \vee \quad \operatorname{Parity}(2 \uparrow x)=0$
20: $\quad \mathrm{S}(\mathrm{P} x)=x \quad$ by
18: $\neg 0=x$
$5: 0=x \quad \vee \quad \mathrm{~S}(\mathrm{P} x)=x$
21: $Q E A$ by
19: $\neg \mathrm{S}(\mathrm{P} x)=x$
20: $\mathrm{S}(\mathrm{P} x)=x$

