Proof of Theorem 236

The theorem to be proved is

$$q$$
 is a power of two & $q \neq 1$ \rightarrow Parity $q = 0$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(q) \text{ is a power of two}] \& [\neg (q) = (1)] \& [\neg (Parityq) = (0)]]$$

Special cases of the hypothesis and previous results:

0:
$$q$$
 is a power of two from H: q

1:
$$\neg 1 = q$$
 from H: q

2:
$$\neg \text{Parity} q = 0$$
 from H:q

3:
$$\neg q$$
 is a power of two $\lor 2 \uparrow x = q$ from $129 \Rightarrow ;q:x$

4:
$$2 \uparrow 0 = 1$$
 from $126;2;x$

5:
$$0 = x \lor S(Px) = x$$
 from $22;x$

6: Parity
$$(2 \uparrow (S(Px))) = 0$$
 from 234; Px

Equality substitutions:

7:
$$\neg 2 \uparrow x = q \lor \neg \text{Parity}(2 \uparrow x) = 0 \lor \text{Parity}(q) = 0$$

8:
$$\neg 2 \uparrow 0 = 1 \lor \neg 2 \uparrow 0 = q \lor 1 = q$$

9:
$$\neg 0 = x \lor 2 \uparrow 0 = q \lor \neg 2 \uparrow x = q$$

10:
$$\neg S(Px) = x \lor \neg Parity(2 \uparrow (S(Px))) = 0 \lor Parity(2 \uparrow (x)) = 0$$

Inferences:

11:
$$2 \uparrow x = q$$
 by

0: q is a power of two

3:
$$\neg q$$
 is a power of two \lor $2 \uparrow x = q$

12:
$$\neg 2 \uparrow 0 = 1 \quad \lor \quad \neg 2 \uparrow 0 = q$$
 by

1:
$$\neg 1 = q$$

8:
$$\neg 2 \uparrow 0 = 1 \quad \lor \quad \neg 2 \uparrow 0 = q \quad \lor \quad \mathbf{1} = q$$

13:
$$\neg 2 \uparrow x = q \quad \lor \quad \neg \text{Parity}(2 \uparrow x) = 0 \quad \text{by}$$

2:
$$\neg \text{Parity} q = 0$$

7:
$$\neg 2 \uparrow x = q \quad \lor \quad \neg \text{Parity}(2 \uparrow x) = 0 \quad \lor \quad \frac{\text{Parity}(2 \uparrow x)}{\text{Parity}(2 \uparrow x)} = 0$$

14:
$$\neg 2 \uparrow 0 = q$$
 by

4:
$$2 \uparrow 0 = 1$$

12:
$$\neg 2 \uparrow 0 = 1 \quad \lor \quad \neg 2 \uparrow 0 = q$$

15:
$$\neg S(Px) = x \lor Parity(2 \uparrow x) = 0$$
 by

6: Parity
$$(2 \uparrow (S(Px))) = 0$$

10:
$$\neg S(Px) = x \lor \neg Parity(2 \uparrow (S(Px))) = 0 \lor Parity(2 \uparrow x) = 0$$

16:
$$\neg 0 = x \lor 2 \uparrow 0 = q$$
 by

11:
$$2 \uparrow x = q$$

9:
$$\neg 0 = x \lor 2 \uparrow 0 = q \lor \neg 2 \uparrow x = q$$

17:
$$\neg \text{Parity}(2 \uparrow x) = 0$$
 by

11:
$$2 \uparrow x = q$$

13:
$$\neg 2 \uparrow x = q \quad \lor \quad \neg \text{Parity}(2 \uparrow x) = 0$$

18:
$$\neg 0 = x$$
 by

14:
$$\neg 2 \uparrow 0 = q$$

16:
$$\neg 0 = x \lor 2 \uparrow 0 = q$$

19:
$$\neg S(Px) = x$$
 by

17:
$$\neg \text{Parity}(2 \uparrow x) = 0$$

15:
$$\neg S(Px) = x \lor Parity(2 \uparrow x) = 0$$

20:
$$S(Px) = x$$
 by

18:
$$\neg 0 = x$$

5:
$$0 = x \lor S(Px) = x$$

$$21: QEA$$
 by

19:
$$\neg S(Px) = x$$

20:
$$S(Px) = x$$