Proof of Theorem 235

The theorem to be proved is

 $\operatorname{Half}(2 \uparrow \operatorname{S} x) = 2 \uparrow x$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (\operatorname{Half}(2 \uparrow (Sx))) = (2 \uparrow x)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg \operatorname{Half}(2 \uparrow (Sx)) = 2 \uparrow x$$
 from H:x
1: $S(S0) = 2$ from 116
2: $S0 = 1$ from 115
3: $\operatorname{Parity}(2 \uparrow (Sx)) = 0$ from 234;x
4: $\neg \operatorname{Parity}(2 \uparrow (Sx)) = 0 \lor 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \uparrow (Sx)$ from 224; $2 \uparrow (Sx)$
5: $2 \cdot (2 \uparrow x) = 2 \uparrow (Sx)$ from 126;2;x
6: $\neg S1 = 0$ from 3;1
7: $\neg 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \cdot (2 \uparrow x) \lor 2 = 0 \lor \operatorname{Half}(2 \uparrow (Sx)) = 2 \uparrow x$ from
198;2;Half $(2 \uparrow (Sx))$; $2 \uparrow x$

Equality substitutions:

8:
$$\neg S0 = 1 \lor \neg S(S0) = 2 \lor S(1) = 2$$

9: $\neg 2 \cdot (\text{Half}(2\uparrow(Sx))) = 2\uparrow(Sx) \lor 2 \cdot (\text{Half}(2\uparrow(Sx))) = 2 \cdot (2\uparrow x) \lor \neg 2\uparrow(Sx) = 2 \cdot (2\uparrow x)$
10: $\neg 2 = 0 \lor \neg S1 = 2 \lor S1 = 0$

Inferences:

11: $\neg 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \cdot (2 \uparrow x) \lor 2 = 0$ by 0: $\neg \operatorname{Half}(2 \uparrow (Sx)) = 2 \uparrow x$ 7: $\neg 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \cdot (2 \uparrow x) \lor 2 = 0 \lor \operatorname{Half}(2 \uparrow (Sx)) = 2 \uparrow x$ 12: $\neg S0 = 1 \lor S1 = 2$ by

1:
$$S(S0) = 2$$

8: $\neg S0 = 1 \lor \neg S(S0) = 2 \lor S1 = 2$

13: S1 = 2 by 2: S0 = 112: $\neg S0 = 1 \lor S1 = 2$ 14: $2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \uparrow (Sx)$ by 3: Parity $(2 \uparrow (Sx)) = 0$ 4: \neg Parity $(2 \uparrow (Sx)) = 0 \lor 2 \cdot (\text{Half}(2 \uparrow (Sx))) = 2 \uparrow (Sx)$ 15: $\neg 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \uparrow (Sx) \lor 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \cdot (2 \uparrow x)$ by 5: $2 \cdot (2 \uparrow x) = 2 \uparrow (Sx)$ 9: $\neg 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \uparrow (Sx) \lor 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \cdot (2 \uparrow x) \lor \neg 2 \cdot (2 \uparrow x) =$ $2\uparrow(\mathbf{S}x)$ 16: $\neg 2 = 0 \lor \neg S1 = 2$ by 6: \neg S1 = 0 10: $\neg 2 = 0 \lor \neg S1 = 2 \lor S1 = 0$ 17: $\neg 2 = 0$ by 13: S1 = 216: $\neg 2 = 0 \lor \neg S1 = 2$ 18: $2 \cdot (\operatorname{Half}(2 \uparrow (\operatorname{S} x))) = 2 \cdot (2 \uparrow x)$ bv 14: $2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \uparrow (Sx)$ 15: $\neg 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \uparrow (Sx) \lor 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \cdot (2 \uparrow x)$ by 19: $\neg 2 \cdot (\operatorname{Half}(2 \uparrow (\operatorname{S} x))) = 2 \cdot (2 \uparrow x)$ 17: $\neg 2 = 0$ 11: $\neg 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \cdot (2 \uparrow x) \lor 2 = 0$ 20: QEAby 18: $2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \cdot (2 \uparrow x)$ 19: $\neg 2 \cdot (\operatorname{Half}(2 \uparrow (Sx))) = 2 \cdot (2 \uparrow x)$