Proof of Theorem 234

The theorem to be proved is

 $\operatorname{Parity}(2 \uparrow \operatorname{S} x) = 0$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (\operatorname{Parity}(2 \uparrow (\operatorname{S} x))) = (0)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg$$
 Parity $(2 \uparrow (Sx)) = 0$ from H:x

- 1: $2 \cdot (2 \uparrow x) = 2 \uparrow (Sx)$ from <u>126</u>;2;x
- 2: Parity2 = 0 from 208
- 3: \neg Parity2 = 0 \lor Parity(2 \cdot (2 \uparrow x)) = 0 from 211;2;2 \uparrow x

Equality substitutions:

4:
$$\neg 2 \cdot (2 \uparrow x) = 2 \uparrow (Sx) \lor \neg \operatorname{Parity}(2 \cdot (2 \uparrow x)) = 0 \lor \operatorname{Parity}(2 \uparrow (Sx)) = 0$$

Inferences:

- 5: $\neg 2 \cdot (2 \uparrow x) = 2 \uparrow (Sx) \lor \neg \operatorname{Parity}(2 \cdot (2 \uparrow x)) = 0$ by 0: $\neg \operatorname{Parity}(2 \uparrow (Sx)) = 0$ 4: $\neg 2 \cdot (2 \uparrow x) = 2 \uparrow (Sx) \lor \neg \operatorname{Parity}(2 \cdot (2 \uparrow x)) = 0 \lor \operatorname{Parity}(2 \uparrow (Sx)) = 0$
- 6: $\neg \operatorname{Parity}(2 \cdot (2 \uparrow x)) = 0$ by 1: $2 \cdot (2 \uparrow x) = 2 \uparrow (Sx)$ 5: $\neg 2 \cdot (2 \uparrow x) = 2 \uparrow (Sx) \lor \neg \operatorname{Parity}(2 \cdot (2 \uparrow x)) = 0$
- 7: $\operatorname{Parity}(2 \cdot (2 \uparrow x)) = 0$ by 2: $\operatorname{Parity}2 = 0$ 3: $\neg \operatorname{Parity}2 = 0 \lor \operatorname{Parity}(2 \cdot (2 \uparrow x)) = 0$
- 8: QEA by 6: \neg Parity $(2 \cdot (2 \uparrow x)) = 0$ 7: Parity $(2 \cdot (2 \uparrow x)) = 0$