Proof of Theorem 232

The theorem to be proved is
2 - Half $x \leq x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(2 \cdot(\operatorname{Half} x)) \leq(x)]]$

Special cases of the hypothesis and previous results:

0: $\neg 2 \cdot($ Half $x) \leq x \quad$ from $\quad \mathrm{H}: x$
1: $\neg \operatorname{Parity} x=0 \quad \vee 2 \cdot($ Half $x)=x \quad$ from $\quad \underline{224} ; x$
2: $\neg \operatorname{Parity} x=1 \quad \vee \quad(2 \cdot(\operatorname{Half} x))+1=x \quad$ from $\quad \underline{225} ; x$
3: $x \leq x \quad$ from $\quad \underline{60} ; x$
4: $2 \cdot($ Half $x) \leq(2 \cdot($ Half $x))+1 \quad$ from $\quad \underline{71} ; 2 \cdot($ Half $x) ; 1$
5: Parity $x=0 \vee \operatorname{Parity} x=1 \quad$ from $\quad \underline{209} ; x$

Equality substitutions:

6: $\quad \neg 2 \cdot($ Half $x)=x \quad \vee \quad 2 \cdot($ Half $x) \leq x \quad \vee \quad \neg x \leq x$

7: $\neg(2 \cdot(\operatorname{Half} x))+1=x \quad \vee \quad \neg 2 \cdot($ Half $x) \leq(2 \cdot($ Half $x))+1 \quad \vee \quad 2 \cdot($ Half $x) \leq x$

Inferences:

8: $\quad \neg 2 \cdot($ Half $x)=x \quad \vee \quad \neg x \leq x \quad$ by
$0: \neg 2 \cdot($ Half $x) \leq x$
6: $\neg 2 \cdot($ Half $x)=x \quad \vee \quad 2 \cdot($ Half $x) \leq x \quad \vee \quad \neg x \leq x$
9: $\neg(2 \cdot($ Half $x))+1=x \quad \vee \quad \neg 2 \cdot($ Half $x) \leq(2 \cdot($ Half $x))+1 \quad$ by
0 : $\neg 2 \cdot($ Half $x) \leq x$
$7: \neg(2 \cdot(\operatorname{Half} x))+1=x \quad \vee \quad \neg 2 \cdot($ Half $x) \leq(2 \cdot($ Half $x))+1 \quad \vee \quad 2 \cdot($ Half $x) \leq x$
10: $\neg 2 \cdot($ Half $x)=x \quad$ by
3: $x \leq x$
8: $\neg 2 \cdot($ Half $x)=x \quad \vee \quad \neg x \leq x$

11: $\neg(2 \cdot(\operatorname{Half} x))+1=x \quad$ by
4: $2 \cdot($ Half $x) \leq(2 \cdot($ Half $x))+1$
9: $\neg(2 \cdot($ Half $x))+1=x \quad \vee \quad \neg 2 \cdot($ Half $x) \leq(2 \cdot($ Half $x))+1$
12: $\neg \operatorname{Parity} x=0 \quad$ by
10: $\neg 2 \cdot($ Half $x)=x$
1: \neg Parity $x=0 \quad \vee \quad 2 \cdot($ Half $x)=x$
13: $\neg \operatorname{Parity} x=1 \quad$ by
11: $\neg(2 \cdot($ Half $x))+1=x$
2: $\neg \operatorname{Parity} x=1 \quad \vee \quad(2 \cdot($ Half $x))+1=x$
14: Parity $x=1 \quad$ by
12: \neg Parity $x=0$
5: Parity $x=0 \vee$ Parity $x=1$
15: $Q E A$ by
13: \neg Parity $x=1$
14: Parity $x=1$

