Proof of Theorem 232

The theorem to be proved is

 $2 \cdot \text{Half } x \leq x$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (2 \cdot (Halfx)) \leq (x)]]$

Special cases of the hypothesis and previous results:

- 0: $\neg 2 \cdot (\text{Half}x) \leq x$ from H:x
- 1: $\neg \text{Parity} x = 0 \lor 2 \cdot (\text{Half} x) = x$ from 224;x
- 2: $\neg \text{Parity} x = 1 \lor (2 \cdot (\text{Half} x)) + 1 = x$ from 225; x
- 3: $x \le x$ from 60;x
- 4: $2 \cdot (\operatorname{Half} x) \le (2 \cdot (\operatorname{Half} x)) + 1$ from $71; 2 \cdot (\operatorname{Half} x); 1$
- 5: Parity $x = 0 \lor Parity x = 1$ from 209;x

Equality substitutions:

- 6: $\neg 2 \cdot (\text{Half}x) = x \quad \lor \quad 2 \cdot (\text{Half}x) \le x \quad \lor \quad \neg x \le x$
- 7: $\neg (2 \cdot (\text{Half}x)) + 1 = x \lor \neg 2 \cdot (\text{Half}x) \le (2 \cdot (\text{Half}x)) + 1 \lor 2 \cdot (\text{Half}x) \le x$

Inferences:

- 8: $\neg 2 \cdot (\text{Half} x) = x \quad \lor \quad \neg x \le x$ by
 - $0: \neg 2 \cdot (\text{Half}x) \leq x$
 - 6: $\neg 2 \cdot (\text{Half}x) = x \quad \lor \quad 2 \cdot (\text{Half}x) \leq x \quad \lor \quad \neg x \leq x$
- 9: $\neg (2 \cdot (\text{Half}x)) + 1 = x \lor \neg 2 \cdot (\text{Half}x) \le (2 \cdot (\text{Half}x)) + 1$ by
 - $0: \neg 2 \cdot (\text{Half} x) \leq x$
 - 7: $\neg (2 \cdot (\text{Half}x)) + 1 = x \quad \lor \quad \neg 2 \cdot (\text{Half}x) \leq (2 \cdot (\text{Half}x)) + 1 \quad \lor \quad 2 \cdot (\text{Half}x) \leq x$
- 10: $\neg 2 \cdot (\text{Half}x) = x$ by
 - $3: x \leq x$
 - 8: $\neg 2 \cdot (\text{Half}x) = x \quad \lor \quad \neg x \leq x$

```
11: \neg (2 \cdot (\text{Half}x)) + 1 = x by

4: 2 \cdot (\text{Half}x) \le (2 \cdot (\text{Half}x)) + 1

9: \neg (2 \cdot (\text{Half}x)) + 1 = x \lor \neg 2 \cdot (\text{Half}x) \le (2 \cdot (\text{Half}x)) + 1
```

12:
$$\neg \operatorname{Parity} x = 0$$
 by
10: $\neg 2 \cdot (\operatorname{Half} x) = x$
1: $\neg \operatorname{Parity} x = 0 \quad \lor \quad 2 \cdot (\operatorname{Half} x) = x$

13:
$$\neg \operatorname{Parity} x = 1$$
 by
11: $\neg (2 \cdot (\operatorname{Half} x)) + 1 = x$
2: $\neg \operatorname{Parity} x = 1 \quad \lor \quad (2 \cdot (\operatorname{Half} x)) + 1 = x$

14:
$$\operatorname{Parity} x = 1$$
 by
12: $\neg \operatorname{Parity} x = 0$
5: $\operatorname{Parity} x = 0 \lor \operatorname{Parity} x = 1$

15:
$$QEA$$
 by
13: $\neg \text{Parity} x = 1$
14: $\text{Parity} x = 1$