Proof of Theorem 231

The theorem to be proved is

$$x \neq \epsilon \rightarrow \operatorname{SChop} x = \operatorname{Half} Qx + \operatorname{Half} Rx$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[\neg (x) = (\epsilon)]$$
 & $[\neg (S(Chop x)) = ((Half(Qx)) + (Half(Rx)))]]$

Special cases of the hypothesis and previous results:

0:
$$\neg \epsilon = x$$
 from H:x

1:
$$\neg (\text{Half}(Qx)) + (\text{Half}(Rx)) = S(\text{Chop}x)$$
 from H:x

2:
$$P((Half(Qx)) + (Half(Rx))) = Chopx$$
 from 229; x

3:
$$\epsilon = x \lor \neg (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) = 0$$
 from 228;x

4:
$$(\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) = 0 \quad \lor \quad S(P((\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)))) = (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) + (\operatorname{Half}(Rx$$

Equality substitutions:

5:
$$\neg P((\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx))) = \operatorname{Chop} x \lor \neg S(P((\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)))) = (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) \lor S(\operatorname{Chop} x) = (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx))$$

Inferences:

6:
$$\neg (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) = 0$$
 by

0: $\neg \epsilon = x$

3: $\epsilon = x \quad \lor \quad \neg (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) = 0$

7: $\neg P((\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx))) = \operatorname{Chop} x \quad \lor \quad \neg S(P((\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)))) = (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) \quad \text{by}$

1: $\neg (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) = \operatorname{S}(\operatorname{Chop} x)$

5: $\neg P((\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx))) = \operatorname{Chop} x \quad \lor \quad \neg S(P((\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)))) = (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) \quad \lor \quad (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) \quad \text{by}$

8: $\neg S(P((\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)))) = (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) \quad \text{by}$

2: $P((\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx))) = \operatorname{Chop} x$

7: $\neg P((\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx))) = \operatorname{Chop} x \quad \lor \quad \neg S(P((\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)))) = (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx))$

```
9: S(P((Half(Qx)) + (Half(Rx)))) = (Half(Qx)) + (Half(Rx)) by

6: \neg (Half(Qx)) + (Half(Rx)) = 0

4: (Half(Qx)) + (Half(Rx)) = 0 \lor S(P((Half(Qx)) + (Half(Rx)))) = (Half(Qx)) + (Half(Rx))

10: QEA by

8: \neg S(P((Half(Qx)) + (Half(Rx)))) = (Half(Qx)) + (Half(Rx))

9: S(P((Half(Qx)) + (Half(Rx)))) = (Half(Qx)) + (Half(Rx))
```