Proof of Theorem 231

The theorem to be proved is
$x \neq \epsilon \quad \rightarrow \quad \mathrm{S}$ Chop $x=$ Half $\mathrm{Q} x+$ Half $\mathrm{R} x$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(\epsilon)] \quad \& \quad[\neg(\mathrm{~S}(\operatorname{Chop} x))=((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)))]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{ll}
0: & \neg \epsilon=x \quad \text { from } \quad \mathrm{H}: x \\
1: & \neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x) \quad \text { from } \quad \mathrm{H}: x \\
2: & \mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)))=\operatorname{Chop} x \quad \text { from } \quad \underline{229} ; x \\
3: & \epsilon=x \quad \vee \quad \neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=0 \quad \text { from } \quad \underline{228} ; x \\
4: & (\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=0 \quad \vee \quad \mathrm{~S}(\mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))))=(\operatorname{Half}(\mathrm{Q} x))+ \\
(\operatorname{Half}(\mathrm{R} x)) \quad \text { from } \quad \underline{22} ; \operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)
\end{array}
$$

Equality substitutions:

5: $\neg \mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)))=\operatorname{Chop} x \quad \vee \quad \neg \mathrm{~S}(\mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))))=$ $(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)) \quad \vee \quad \mathrm{S}(\operatorname{Chop} x)=(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))$

Inferences:

6: $\quad \neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=0 \quad$ by
0: $\neg \epsilon=x$
3: $\epsilon=x \quad \vee \quad \neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=0$
7: $\neg \mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)))=\operatorname{Chop} x \quad \vee \quad \neg \mathrm{~S}(\mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))))=$
$(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)) \quad$ by
1: $\neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x)$
5: $\neg \mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)))=\operatorname{Chop} x \quad \vee \quad \mathrm{~S}(\mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))))=$ $(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)) \vee(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=\mathrm{S}(\operatorname{Chop} x)$

8: $\quad \neg \mathrm{S}(\mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))))=(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)) \quad$ by
2: $\mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)))=\mathrm{Chop} x$
7: $\neg \mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)))=\mathrm{Chop} x \quad \vee \quad \neg \mathrm{~S}(\mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))))=$ $(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))$

9: $\quad \mathrm{S}(\mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))))=(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)) \quad$ by
6: $\neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=0$
4: $(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=0 \quad \vee \quad \mathrm{~S}(\mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))))=(\operatorname{Half}(\mathrm{Q} x))+$ ($\operatorname{Half}(\mathrm{R} x))$

10: $Q E A$ by
8: $\neg \mathrm{S}(\mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))))=(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))$
9: $\mathrm{S}(\mathrm{P}((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))))=(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))$

