Proof of Theorem 230

The theorem to be proved is

$$\operatorname{Chop} \epsilon = \epsilon$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[\neg (Chop \epsilon) = (\epsilon)]]$$

Special cases of the hypothesis and previous results:

0:
$$\neg \text{Chop}\epsilon = \epsilon$$
 from H

1:
$$P((Half(Q_{\epsilon})) + (Half(R_{\epsilon}))) = Chop_{\epsilon}$$
 from $\underline{229};_{\epsilon}$

2:
$$Q\epsilon = 1$$
 from 189

3:
$$R\epsilon = 0$$
 from 189

4:
$$\epsilon = 0$$
 from 185

5:
$$Half0 = 0$$
 from 221

6:
$$Half1 = 0$$
 from 221

7:
$$0 + 0 = 0$$
 from 12;0

8:
$$P0 = 0$$
 from 16

Equality substitutions:

9:
$$\neg Q\epsilon = 1 \lor \neg P((Half(Q\epsilon)) + (Half(R\epsilon))) = Chop\epsilon \lor P((Half(1)) + (Half(R\epsilon))) = Chop\epsilon$$

10:
$$\neg R\epsilon = 0 \lor \neg P((Half1) + (Half(R\epsilon))) = Chop\epsilon \lor P((Half1) + (Half(0))) = Chop\epsilon$$

11:
$$\neg \text{Half0} = 0 \lor \neg P((\text{Half1}) + (\text{Half0})) = \text{Chop}\epsilon \lor P((\text{Half1}) + (0)) = \text{Chop}\epsilon$$

12:
$$\neg \text{Half1} = 0 \lor P((\text{Half1}) + 0) = P0 \lor \neg P((0) + 0) = P0$$

13:
$$\neg 0 + 0 = 0 \lor P(0 + 0) = P0 \lor \neg P(0) = P0$$

14:
$$\neg P0 = 0 \lor \neg Chop\epsilon = P0 \lor Chop\epsilon = 0$$

15:
$$\neg P((Half1) + 0) = Chop\epsilon \lor \neg P((Half1) + 0) = P0 \lor Chop\epsilon = P0$$

16:
$$\neg \text{Chop}\epsilon = 0 \quad \lor \quad \frac{\text{Chop}\epsilon}{\text{Chop}\epsilon} = \epsilon \quad \lor \quad \neg 0 = \epsilon$$

Inferences:

17:
$$\neg \text{Chop}\epsilon = 0 \quad \forall \quad \neg \epsilon = 0 \quad \text{by}$$

0: $\neg \text{Chop}\epsilon = \epsilon$

16: $\neg \text{Chop}\epsilon = \epsilon$

16: $\neg \text{Chop}\epsilon = 0 \quad \forall \quad \text{Chop}\epsilon = \epsilon \quad \forall \quad \neg \epsilon = 0$

18: $\neg Q\epsilon = 1 \quad \forall \quad P((\text{Half}1) + (\text{Half}(R\epsilon))) = \text{Chop}\epsilon \quad \text{by}$

1: $P((\text{Half}(Q\epsilon)) + (\text{Half}(R\epsilon))) = \text{Chop}\epsilon \quad \text{by}$

1: $P((\text{Half}1) + (\text{Half}(R\epsilon))) = \text{Chop}\epsilon \quad \text{by}$

2: $Q\epsilon = 1 \quad \forall \quad P((\text{Half}1) + (\text{Half}(R\epsilon))) = \text{Chop}\epsilon \quad \text{by}$

2: $Q\epsilon = 1$

18: $\neg Q\epsilon = 1 \quad \forall \quad P((\text{Half}1) + (\text{Half}(R\epsilon))) = \text{Chop}\epsilon$

20: $\neg P((\text{Half}1) + (\text{Half}(R\epsilon))) = \text{Chop}\epsilon \quad \forall \quad P((\text{Half}1) + (\text{Half}0)) = \text{Chop}\epsilon \quad \text{by}$

3: $R\epsilon = 0$

10: $\neg R\epsilon = 0 \quad \forall \quad \neg P((\text{Half}1) + (\text{Half}(R\epsilon))) = \text{Chop}\epsilon \quad \forall \quad P((\text{Half}1) + (\text{Half}0)) = \text{Chop}\epsilon$

21: $\neg \text{Chop}\epsilon = 0 \quad \text{by}$

4: $\epsilon = 0$

17: $\neg \text{Chop}\epsilon = 0 \quad \forall \quad \neg \epsilon = 0$

22: $\neg P((\text{Half}1) + (\text{Half}0)) = \text{Chop}\epsilon \quad \forall \quad P((\text{Half}1) + 0) = \text{Chop}\epsilon \quad \text{by}$

5: $\text{Half}0 = 0$

11: $\neg \text{Half}0 = 0 \quad \forall \quad \neg P((\text{Half}1) + (\text{Half}0)) = \text{Chop}\epsilon \quad \forall \quad P((\text{Half}1) + 0) = \text{Chop}\epsilon$

23: $P((\text{Half}1) + 0) = \text{P0} \quad \forall \quad \neg P(0 + 0) = \text{P0} \quad \text{by}$

6: $\text{Half}1 = 0$

12: $\neg \text{Half}1 = 0 \quad \forall \quad P((\text{Half}1) + 0) = \text{P0} \quad \forall \quad \neg P(0 + 0) = \text{P0}$

24: $P(0 + 0) = P0 \quad \text{by}$

7: $O(0 + 0) = P0 \quad \text{by}$

8: $O(0 + 0) = P0 \quad \forall \quad \neg \text{Chop}\epsilon = P0 \quad \forall \quad \text{Chop}\epsilon = P0$