Proof of Theorem 22i

The theorem to be proved is
$[x \neq 0 \quad \rightarrow \quad x=\mathrm{SP} x] \quad \rightarrow \quad[\mathrm{S} x \neq 0 \quad \rightarrow \quad \mathrm{~S} x=\mathrm{SPS} x]$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(x)=(0) \quad \vee \quad(x)=(\mathrm{S}(\mathrm{P} x))] \quad \& \quad[\neg(\mathrm{~S} x)=(0)] \quad \& \quad[\neg(\mathrm{~S} x)=(\mathrm{S}(\mathrm{P}(\mathrm{S} x)))]]$

Special cases of the hypothesis and previous results:

0: $\neg \mathrm{S}(\mathrm{P}(\mathrm{S} x))=\mathrm{S} x \quad$ from $\quad \mathrm{H}: x$
1: $\quad \mathrm{P}(\mathrm{S} x)=x \quad$ from $\quad \underline{16} ; x$
Equality substitutions:

2: $\neg \mathrm{P}(\mathrm{S} x)=x \quad \vee \quad \mathrm{~S}(\mathrm{P}(\mathrm{S} x))=\mathrm{S} x \quad \vee \quad \neg \mathrm{~S}(x)=\mathrm{S} x$

Inferences:

3: $\neg \mathrm{P}(\mathrm{S} x)=x \quad$ by
0: $\neg \mathrm{S}(\mathrm{P}(\mathrm{S} x))=\mathrm{S} x$
2: $\neg \mathrm{P}(\mathrm{S} x)=x \quad \vee \quad \mathrm{~S}(\mathrm{P}(\mathrm{S} x))=\mathrm{S} x$
4: $Q E A$ by
1: $\mathrm{P}(\mathrm{S} x)=x$
3: $\neg \mathrm{P}(\mathrm{S} x)=x$

