Proof of Theorem 228

The theorem to be proved is

$$x \neq \epsilon \rightarrow \operatorname{Half} Qx + \operatorname{Half} Rx \neq 0$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[\neg (x) = (\epsilon)]$$
 & $[((\text{Half}(Qx)) + (\text{Half}(Rx))) = (0)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg \epsilon = x$$
 from H:x

1:
$$(\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) = 0$$
 from H:x

2:
$$\neg (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) = 0 \lor \operatorname{Half}(Qx) = 0$$
 from $\underline{15}; \operatorname{Half}(Qx); \operatorname{Half}(Rx)$

3:
$$\neg \operatorname{Half}(Qx) = 0 \quad \lor \quad Qx = 0 \quad \lor \quad Qx = 1 \quad \text{from} \quad \underline{227}; Qx$$

4:
$$\neg Qx = 0$$
 from $178;x$

5:
$$\neg Qx = 1 \lor \epsilon = x$$
 from $203;x$

Inferences:

6:
$$\neg Qx = 1$$
 by

$$0: \neg \epsilon = x$$

5:
$$\neg Qx = 1 \lor \epsilon = x$$

7:
$$Half(Qx) = 0$$
 by

1:
$$(\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) = 0$$

2:
$$\neg (\operatorname{Half}(Qx)) + (\operatorname{Half}(Rx)) = 0 \lor \operatorname{Half}(Qx) = 0$$

8:
$$\neg \operatorname{Half}(Qx) = 0 \lor Qx = 1$$
 by

4:
$$\neg Qx = 0$$

3:
$$\neg \operatorname{Half}(Qx) = 0 \quad \lor \quad Qx = 0 \quad \lor \quad Qx = 1$$

9:
$$\neg \operatorname{Half}(Qx) = 0$$
 by

6:
$$\neg Qx = 1$$

8:
$$\neg \operatorname{Half}(Qx) = 0 \quad \lor \quad Qx = 1$$

10:
$$QEA$$
 by

7:
$$Half(Qx) = 0$$

9:
$$\neg \operatorname{Half}(Qx) = 0$$