Proof of Theorem 228

The theorem to be proved is
$x \neq \epsilon \quad \rightarrow \quad$ Half $\mathrm{Q} x+$ Half $\mathrm{R} x \neq 0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x)=(\epsilon)] \quad \& \quad[((\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x)))=(0)]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{rllll}
0: & \neg \epsilon=x \quad \text { from } \quad \mathrm{H}: x \\
1: & (\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=0 \quad \text { from } \quad \mathrm{H}: x \\
2: & \neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=0 \quad \vee \quad \operatorname{Half}(\mathrm{Q} x)=0 \quad \text { from } \quad \underline{15 ;} \operatorname{Half}(\mathrm{Q} x) ; \operatorname{Half}(\mathrm{R} x) \\
3: & \neg \operatorname{Half}(\mathrm{Q} x)=0 \quad \vee \quad \mathrm{Q} x=0 \quad \vee \quad \mathrm{Q} x=1 \quad \text { from } \quad \underline{227 ; \mathrm{Q} x} \\
4: & \neg \mathrm{Q} x=0 \quad \text { from } \quad \underline{178 ; x} \\
5: & \neg \mathrm{Q} x=1 \quad \vee \quad \epsilon=x \quad \text { from } \quad \underline{203 ;} ;
\end{array}
$$

Inferences:

6: $\quad \neg \mathrm{Q} x=1 \quad$ by
0 : $\neg \epsilon=x$
5: $\neg \mathrm{Q} x=1 \quad \vee \quad \epsilon=x$
7: $\quad \operatorname{Half}(\mathrm{Q} x)=0 \quad$ by
1: $(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=0$
2: $\neg(\operatorname{Half}(\mathrm{Q} x))+(\operatorname{Half}(\mathrm{R} x))=0 \quad \vee \quad \operatorname{Half}(\mathrm{Q} x)=0$
8: $\quad \neg \operatorname{Half}(\mathrm{Q} x)=0 \quad \vee \quad \mathrm{Q} x=1 \quad$ by
4: $\neg \mathrm{Q} x=0$
3: $\neg \operatorname{Half}(\mathrm{Q} x)=0 \quad \vee \quad \mathrm{Q} x=0 \quad \vee \quad \mathrm{Q} x=1$
9: $\neg \operatorname{Half}(\mathrm{Q} x)=0 \quad$ by
6: $\neg \mathrm{Q} x=1$
8: $\neg \operatorname{Half}(\mathrm{Q} x)=0 \quad \vee \quad \mathrm{Q} x=1$
10: $Q E A$ by
7: $\operatorname{Half}(\mathrm{Q} x)=0$
9: $\neg \operatorname{Half}(\mathrm{Q} x)=0$

