Proof of Theorem 227

The theorem to be proved is

 $\operatorname{Half} x = 0 \quad \to \quad x = 0 \quad \lor \quad x = 1$

Suppose the theorem does not hold. Then, with the variables held fixed, (H) $[[(Half x) = (0)] \& [\neg (x) = (0)] \& [\neg (x) = (1)]]$

Special cases of the hypothesis and previous results:

0: Half x = 0 from H:x 1: $\neg 0 = x$ from H:x 2: $\neg 1 = x$ from H:x 3: $x \le (2 \cdot (\text{Half }x)) + 1$ from 226;x 4: $2 \cdot 0 = 0$ from 100;2 5: 0 + 1 = 1 from 97;1 6: $\neg x \le 1 \lor 0 = x \lor 1 = x$ from 200;x

Equality substitutions:

7:
$$\neg \operatorname{Half} x = 0 \quad \lor \quad \neg x \leq (2 \cdot (\operatorname{Half} x)) + 1 \quad \lor \quad x \leq (2 \cdot (0)) + 1$$

8: $\neg 2 \cdot 0 = 0 \quad \lor \quad \neg x \leq (2 \cdot 0) + 1 \quad \lor \quad x \leq (0) + 1$
9: $\neg 0 + 1 = 1 \quad \lor \quad \neg x \leq 0 + 1 \quad \lor \quad x \leq 1$

Inferences:

10:
$$\neg x \le (2 \cdot (\text{Half}x)) + 1 \quad \lor \quad x \le (2 \cdot 0) + 1$$
 by
0: $\text{Half}x = 0$
7: $\neg \text{Half}x = 0 \quad \lor \quad \neg x \le (2 \cdot (\text{Half}x)) + 1 \quad \lor \quad x \le (2 \cdot 0) + 1$
11: $\neg x \le 1 \quad \lor \quad 1 = x$ by
1: $\neg 0 = x$
6: $\neg x \le 1 \quad \lor \quad 0 = x \quad \lor \quad 1 = x$
12: $\neg x \le 1 \quad \text{by}$
2: $\neg 1 = x$
11: $\neg x \le 1 \quad \lor \quad 1 = x$

- 13: $x \le (2 \cdot 0) + 1$ by 3: $x \le (2 \cdot (\operatorname{Half} x)) + 1$ 10: $\neg x \le (2 \cdot (\operatorname{Half} x)) + 1$ $\lor x \le (2 \cdot 0) + 1$ 14: $\neg x \le (2 \cdot 0) + 1$ $\lor x \le 0 + 1$ by 4: $2 \cdot 0 = 0$ 8: $\neg 2 \cdot 0 = 0$ $\lor \neg x \le (2 \cdot 0) + 1$ $\lor x \le 0 + 1$ 15: $\neg x \le 0 + 1$ $\lor x \le 1$ by 5: 0 + 1 = 19: $\neg 0 + 1 = 1$ $\lor \neg x \le 0 + 1$ $\lor x \le 1$ 16: $\neg x \le 0 + 1$ by 12: $\neg x \le 1$ 15: $\neg x \le 0 + 1$ $\lor x \le 1$ 17: $x \le 0 + 1$ by 13: $x \le (2 \cdot 0) + 1$
 - 14: $\neg x \le (2 \cdot 0) + 1 \lor x \le 0 + 1$
- 18: QEA by 16: $\neg x \le 0 + 1$ 17: $x \le 0 + 1$