Proof of Theorem 226

The theorem to be proved is

 $x \leq 2 \cdot \operatorname{Half} x + 1$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (x) \le ((2 \cdot (\text{Half}x)) + 1)]]$

Special cases of the hypothesis and previous results:

0:
$$\neg x \leq (2 \cdot (\operatorname{Half} x)) + 1$$
 from H:x
1: $\neg \operatorname{Parity} x = 0 \lor 2 \cdot (\operatorname{Half} x) = x$ from 224;x
2: $\neg \operatorname{Parity} x = 1 \lor (2 \cdot (\operatorname{Half} x)) + 1 = x$ from 225;x
3: $2 \cdot (\operatorname{Half} x) \leq (2 \cdot (\operatorname{Half} x)) + 1$ from 71; $2 \cdot (\operatorname{Half} x)$;1
4: $\operatorname{Parity} x = 0 \lor \operatorname{Parity} x = 1$ from 209;x
5: $x \leq x$ from 60;x

Equality substitutions:

Inferences:

- 9: $\neg 2 \cdot (\operatorname{Half} x) = x \quad \lor \quad \neg x \leq x+1$ by 0: $\neg x \leq (2 \cdot (\operatorname{Half} x)) + 1$ 6: $\neg 2 \cdot (\operatorname{Half} x) = x \quad \lor \quad x \leq (2 \cdot (\operatorname{Half} x)) + 1 \quad \lor \quad \neg x \leq x+1$
- 10: $\neg (2 \cdot (\operatorname{Half} x)) + 1 = x \lor \neg x \le x$ by 0: $\neg x \le (2 \cdot (\operatorname{Half} x)) + 1$ 8: $\neg (2 \cdot (\operatorname{Half} x)) + 1 = x \lor x \le (2 \cdot (\operatorname{Half} x)) + 1 \lor \neg x \le x$

11:
$$\neg 2 \cdot (\operatorname{Half} x) = x \quad \lor \quad x \leq x+1$$
 by
3: $2 \cdot (\operatorname{Half} x) \leq (2 \cdot (\operatorname{Half} x)) + 1$
7: $\neg 2 \cdot (\operatorname{Half} x) = x \quad \lor \quad \neg 2 \cdot (\operatorname{Half} x) \leq (2 \cdot (\operatorname{Half} x)) + 1 \quad \lor \quad x \leq x+1$

- 12: $\neg (2 \cdot (\operatorname{Half} x)) + 1 = x$ by 5: $x \leq x$ 10: $\neg (2 \cdot (\operatorname{Half} x)) + 1 = x \lor \neg x \leq x$
- 13: \neg Parityx = 1 by 12: $\neg (2 \cdot (\text{Half}x)) + 1 = x$ 2: \neg Parity $x = 1 \lor (2 \cdot (\text{Half}x)) + 1 = x$
- 14: $\operatorname{Parity} x = 0$ by 13: $\neg \operatorname{Parity} x = 1$ 4: $\operatorname{Parity} x = 0 \lor \operatorname{Parity} x = 1$
- 15: $2 \cdot (\operatorname{Half} x) = x$ by 14: $\operatorname{Parity} x = 0$ 1: $\neg \operatorname{Parity} x = 0 \lor 2 \cdot (\operatorname{Half} x) = x$
- 16: $\neg x \le x + 1$ by 15: $2 \cdot (\text{Half}x) = x$ 9: $\neg 2 \cdot (\text{Half}x) = x \lor \neg x \le x + 1$
- 17: $x \le x + 1$ by 15: $2 \cdot (\text{Half}x) = x$ 11: $\neg 2 \cdot (\text{Half}x) = x \lor x \le x + 1$
- 18: QEA by 16: $\neg x \le x + 1$ 17: $x \le x + 1$