Proof of Theorem 226

The theorem to be proved is
$x \leq 2 \cdot$ Half $x+1$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(x) \leq((2 \cdot($ Half $x))+1)]]$

Special cases of the hypothesis and previous results:

$$
\begin{aligned}
0: & \neg x \leq(2 \cdot(\text { Half } x))+1 \quad \text { from } \quad \mathrm{H}: x \\
1: & \neg \operatorname{Parity} x=0 \quad \vee \quad 2 \cdot(\operatorname{Half} x)=x \quad \text { from } \quad \underline{224} ; x \\
2: & \neg \operatorname{Parity} x=1 \quad \vee \quad(2 \cdot(\operatorname{Half} x))+1=x \quad \text { from } \underline{225 ;} ; x \\
3: & 2 \cdot(\operatorname{Half} x) \leq(2 \cdot(\operatorname{Half} x))+1 \quad \text { from } \quad \underline{71 ; 2 \cdot(\text { Half } x) ; 1} \\
4: & \text { Parity } x=0 \quad \vee \quad \text { Parity } x=1 \quad \text { from } \quad \underline{209 ; x} \\
5: & x \leq x \quad \text { from } \quad \underline{60} ; x
\end{aligned}
$$

Equality substitutions:

6: $\neg 2 \cdot($ Half $x)=x \quad \vee \quad x \leq(2 \cdot($ Half $x))+1 \quad \vee \quad \neg x \leq(x)+1$
7: $\neg 2 \cdot($ Half $x)=x \quad \vee \quad \neg 2 \cdot($ Half $x) \leq(2 \cdot($ Half $x))+1 \quad \vee \quad x \leq(x)+1$
8: $\neg(2 \cdot($ Half $x))+1=x \quad \vee \quad x \leq(2 \cdot($ Half $x))+1 \quad \vee \quad \neg x \leq x$

Inferences:

9: $\quad \neg 2 \cdot(\operatorname{Half} x)=x \quad \vee \quad \neg x \leq x+1 \quad$ by
$0: \neg x \leq(2 \cdot($ Half $x))+1$
6: $\neg 2 \cdot($ Half $x)=x \quad \vee \quad x \leq(2 \cdot($ Half $x))+1 \quad \vee \quad \neg x \leq x+1$
10: $\neg(2 \cdot($ Half $x))+1=x \quad \vee \quad \neg x \leq x \quad$ by
$0: \neg x \leq(2 \cdot($ Half $x))+1$
8: $\neg(2 \cdot($ Half $x))+1=x \quad \vee \quad x \leq(2 \cdot($ Half $x))+1 \quad \vee \quad \neg x \leq x$
11: $\neg 2 \cdot($ Half $x)=x \quad \vee \quad x \leq x+1 \quad$ by
3: $2 \cdot($ Half $x) \leq(2 \cdot($ Half $x))+1$
$7: \neg 2 \cdot(\operatorname{Half} x)=x \quad \vee \quad \neg 2 \cdot($ Half $x) \leq(2 \cdot($ Half $x))+1 \quad \vee \quad x \leq x+1$

12: $\neg(2 \cdot(\operatorname{Half} x))+1=x \quad$ by
5: $x \leq x$
10: $\neg(2 \cdot($ Half $x))+1=x \quad \vee \quad \neg x \leq x$
13: $\neg \operatorname{Parity} x=1 \quad$ by
12: $\neg(2 \cdot($ Half $x))+1=x$
2: $\neg \operatorname{Parity} x=1 \quad \vee \quad(2 \cdot(\operatorname{Half} x))+1=x$
14: Parity $x=0 \quad$ by
13: \neg Parity $x=1$
4: Parity $x=0 \vee \operatorname{Parity} x=1$
15: $2 \cdot($ Half $x)=x \quad$ by
14: Parity $x=0$
1: \neg Parity $x=0 \vee 2 \cdot(\operatorname{Half} x)=x$
16: $\neg x \leq x+1 \quad$ by
15: $2 \cdot($ Half $x)=x$
9: $\neg 2 \cdot($ Half $x)=x \quad \vee \quad \neg x \leq x+1$
17: $x \leq x+1 \quad$ by
15: $2 \cdot($ Half $x)=x$
11: $\neg 2 \cdot($ Half $x)=x \quad \vee \quad x \leq x+1$
18: $Q E A$ by
16: $\neg x \leq x+1$
17: $x \leq x+1$

