Proof of Theorem 225

The theorem to be proved is
Parity $x=1 \quad \rightarrow \quad x=2 \cdot$ Half $x+1$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[(\operatorname{Parity} x)=(1)] \quad \& \quad[\neg(x)=((2 \cdot(\operatorname{Half} x))+1)]]$

Special cases of the hypothesis and previous results:

0: Parity $x=1 \quad$ from $\quad \mathrm{H}: x$
1: $\neg(2 \cdot(\operatorname{Half} x))+1=x \quad$ from $\quad \mathrm{H}: x$
2: $\quad \mathrm{p}_{222}(x) \quad$ from $\quad \underline{223} ; x$
3: $\neg \mathrm{p}_{222}(x) \vee \neg \operatorname{Parity} x=1 \quad \vee \quad(2 \cdot($ Half $x))+1=x \quad$ from $\quad \underline{222}^{\rightarrow} ; x$

Inferences:

4: $\neg \mathrm{p}_{222}(x) \quad \vee \quad(2 \cdot(\operatorname{Half} x))+1=x \quad$ by
0: Parity $x=1$
3: $\neg \mathrm{p}_{222}(x) \vee \neg \operatorname{Parity} x=1 \quad \vee \quad(2 \cdot($ Half $x))+1=x$
5: $\neg \mathrm{p}_{222}(x) \quad$ by
1: $\neg(2 \cdot($ Half $x))+1=x$
4: $\neg \mathrm{p}_{222}(x) \quad \vee \quad(2 \cdot($ Half $x))+1=x$
6: $Q E A$ by
2: $\mathrm{p}_{222}(x)$
5: $\neg \mathrm{p}_{222}(x)$

