Proof of Theorem 225

The theorem to be proved is

Parity
$$x = 1 \rightarrow x = 2 \cdot \text{Half } x + 1$$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H)
$$[[(Parityx) = (1)]$$
 & $[\neg (x) = ((2 \cdot (Halfx)) + 1)]]$

Special cases of the hypothesis and previous results:

- 0: Parityx = 1 from H:x
- 1: $\neg (2 \cdot (Halfx)) + 1 = x$ from H:x
- 2: $p_{222}(x)$ from 223;x
- 3: $\neg p_{222}(x) \lor \neg Parity x = 1 \lor (2 \cdot (Half x)) + 1 = x$ from $222^{->}; x$

Inferences:

- 4: $\neg p_{222}(x) \lor (2 \cdot (Half x)) + 1 = x$ by
 - 0: Parityx = 1
 - 3: $\neg p_{222}(x) \lor \neg Parity x = 1 \lor (2 \cdot (Half x)) + 1 = x$
- 5: $\neg p_{222}(x)$ by
 - 1: $\neg (2 \cdot (Half x)) + 1 = x$
 - 4: $\neg p_{222}(x) \lor (2 \cdot (Half x)) + 1 = x$
- 6: QEA by
 - 2: $p_{222}(x)$
 - 5: $\neg p_{222}(x)$