Proof of Theorem 216

The theorem to be proved is
$\operatorname{Parity} \mathrm{R}(x \oplus \underline{1})=1$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\operatorname{Parity}(\mathrm{R}(x \oplus \underline{1})))=(1)]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=1 \quad$ from $\quad \mathrm{H}: x$
1: $\quad((\mathrm{R} x) \cdot(\mathrm{Q} \underline{1}))+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad$ from $\quad \underline{180} ; x ; \underline{1}$
2: $\mathrm{Q} \underline{1}=2 \quad$ from $\quad \underline{192}$
3: $\mathrm{R} \underline{1}=1 \quad$ from $\quad \underline{192}$
4: $\operatorname{Parity}(((\mathrm{R} x) \cdot 2)+1)=$ Parity1 from $\quad 212 ; \mathrm{R} x ; 1$
5: \quad Parity $1=1 \quad$ from $\quad \underline{208}$

Equality substitutions:

$$
\begin{aligned}
& \text { 6: } \neg \mathrm{Q} \underline{1}=2 \vee \neg((\mathrm{R} x) \cdot(\mathrm{Q} \underline{1}))+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad((\mathrm{R} x) \cdot(2))+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \\
& \text { 7: } \neg \mathrm{R} \underline{1}=1 \quad \vee \neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+(1)=\mathrm{R}(x \oplus \underline{1}) \\
& \text { 8: } \neg \operatorname{Parity} 1=1 \quad \vee \quad \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=\operatorname{Parity} 1 \quad \vee \quad \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=1 \\
& \text { 9: } \neg((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \vee \neg \operatorname{Parity}(((\mathrm{R} x) \cdot 2)+1)=\operatorname{Parity} 1 \vee \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))= \\
& \text { Parity1 }
\end{aligned}
$$

Inferences:

10: $\neg \operatorname{Parity} 1=1 \quad \vee \quad \neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=\operatorname{Parity} 1 \quad$ by
$0: \neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=1$
8: $\neg \operatorname{Parity} 1=1 \quad \vee \quad \neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=\operatorname{Parity} 1 \quad \vee \quad \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=1$
11: $\neg \mathrm{Q} \underline{1}=2 \vee((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad$ by
1: $((\mathrm{R} x) \cdot(\mathrm{Q} \underline{1}))+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1})$
6: $\neg \mathrm{Q} \underline{1}=2 \quad \vee \neg((\mathrm{R} x) \cdot(\mathrm{Q} \underline{1}))+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1})$

12: $\quad((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad$ by
2: $\mathrm{Q} 1=2$
11: $\neg \mathrm{Q} \underline{1}=2 \quad \vee \quad((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1})$
13: $\quad \neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \quad$ by
3: $\mathrm{R} \underline{1}=1$
$7: \neg \mathrm{R} \underline{1}=1 \quad \vee \quad \neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1})$
14: $\neg((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=\operatorname{Parity} 1 \quad$ by
4: Parity $(((\mathrm{R} x) \cdot 2)+1)=$ Parity1
9: $\neg((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad \neg \operatorname{Parity}(((\mathrm{R} x) \cdot 2)+1)=\operatorname{Parity} 1 \quad \vee$
$\operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=\operatorname{Parity} 1$
15: $\neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=\operatorname{Parity} 1 \quad$ by
5: $\operatorname{Parity} 1=1$
10: $\neg \operatorname{Parity} 1=1 \quad \vee \quad \neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=\operatorname{Parity} 1$
16: $\quad((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \quad$ by
12: $((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1})$
13: $\neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{1})=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1})$
17: $\neg((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \quad$ by
15: $\neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=\operatorname{Parity} 1$
14: $\neg((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1}) \quad \vee \quad \operatorname{Parity}(\mathrm{R}(x \oplus \underline{1}))=\operatorname{Parity} 1$
18: $Q E A$ by
16: $((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1})$
17: $\neg((\mathrm{R} x) \cdot 2)+1=\mathrm{R}(x \oplus \underline{1})$

