Proof of Theorem 215

The theorem to be proved is
Parity $\mathrm{R}(x \oplus \underline{0})=0$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\operatorname{Parity}(\mathrm{R}(x \oplus \underline{0})))=(0)]]$

Special cases of the hypothesis and previous results:

$$
\begin{array}{llll}
0: & \neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=0 \quad \text { from } & \mathrm{H}: x \\
1: & ((\mathrm{R} x) \cdot(\mathrm{Q} \underline{0}))+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0}) & \text { from } \quad \underline{180} ; x ; \underline{0} \\
2: & \mathrm{Q} \underline{0}=2 \quad \text { from } \quad \underline{191} \\
3: & \mathrm{R} \underline{0}=0 \quad \text { from } \quad \underline{191} \\
4: & \operatorname{Parity}(((\mathrm{R} x) \cdot 2)+0)=\operatorname{Parity0} & \text { from } & \underline{212} ; \mathrm{R} x ; 0 \\
5: & \text { Parity0 }=0 \quad \text { from } \underline{205} & &
\end{array}
$$

Equality substitutions:

$$
\begin{aligned}
& \text { 6: } \neg \mathrm{Q} \underline{0}=2 \quad \vee \neg((\mathrm{R} x) \cdot(\mathrm{Q} \underline{0}))+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0}) \quad \vee \quad((\mathrm{R} x) \cdot(2))+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0}) \\
& \text { 7: } \\
& \neg \mathrm{R} \underline{0}=0 \quad \vee \quad \neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+(0)=\mathrm{R}(x \oplus \underline{0}) \\
& 8: \\
& \text { 8: Parity} 0=0 \quad \vee \quad \neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=\operatorname{Parity} 0 \quad \vee \quad \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=0 \\
& \text { 9: } \quad \neg((\mathrm{R} x) \cdot 2)+0=\mathrm{R}(x \oplus \underline{0}) \vee \neg \operatorname{Parity}(((\mathrm{R} x) \cdot 2)+0)=\operatorname{Parity} 0 \vee \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))= \\
& \text { Parity0 }
\end{aligned}
$$

Inferences:

10: $\neg \operatorname{Parity} 0=0 \quad \vee \quad \neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=\operatorname{Parity} 0 \quad$ by
0: $\neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=0$
8: $\neg \operatorname{Parity} 0=0 \quad \vee \quad \neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=\operatorname{Parity} 0 \quad \vee \quad \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=0$
11: $\neg \mathrm{Q} \underline{0}=2 \vee((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0}) \quad$ by
1: $((\mathrm{R} x) \cdot(\mathrm{Q} \underline{0}))+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0})$
6: $\neg \mathrm{Q} \underline{0}=2 \vee \neg((\mathrm{R} x) \cdot(\mathrm{Q} \underline{0}))+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0})$

12: $\quad((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0}) \quad$ by
2: $\mathrm{Q} \underline{0}=2$
11: $\neg \mathrm{Q} \underline{0}=2 \quad \vee \quad((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0})$
13: $\quad \neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+0=\mathrm{R}(x \oplus \underline{0}) \quad$ by
3: $\mathrm{R} \underline{0}=0$
$7: \neg \mathrm{R} \underline{0}=0 \quad \vee \quad \neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+0=\mathrm{R}(x \oplus \underline{0})$
14: $\neg((\mathrm{R} x) \cdot 2)+0=\mathrm{R}(x \oplus \underline{0}) \quad \vee \quad \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=\operatorname{Parity} 0 \quad$ by
4: $\operatorname{Parity}(((\mathrm{R} x) \cdot 2)+0)=\operatorname{Parity} 0$
9: $\neg((\mathrm{R} x) \cdot 2)+0=\mathrm{R}(x \oplus \underline{0}) \quad \vee \quad \neg \operatorname{Parity}(((\mathrm{R} x) \cdot 2)+0)=\operatorname{Parity} 0 \quad \vee$
$\operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=\operatorname{Parity} 0$
15: $\quad \neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=\operatorname{Parity} 0 \quad$ by
5: Parity0 $=0$
10: $\neg \operatorname{Parity} 0=0 \quad \vee \quad \neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=\operatorname{Parity} 0$
16: $\quad((\mathrm{R} x) \cdot 2)+0=\mathrm{R}(x \oplus \underline{0}) \quad$ by
12: $((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0})$
13: $\neg((\mathrm{R} x) \cdot 2)+(\mathrm{R} \underline{0})=\mathrm{R}(x \oplus \underline{0}) \quad \vee \quad((\mathrm{R} x) \cdot 2)+0=\mathrm{R}(x \oplus \underline{0})$
17: $\quad \neg((\mathrm{R} x) \cdot 2)+0=\mathrm{R}(x \oplus \underline{0}) \quad$ by
15: $\neg \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=\operatorname{Parity} 0$
14: $\neg((\mathrm{R} x) \cdot 2)+0=\mathrm{R}(x \oplus \underline{0}) \quad \vee \quad \operatorname{Parity}(\mathrm{R}(x \oplus \underline{0}))=\operatorname{Parity} 0$
18: $Q E A$ by
16: $((\mathrm{R} x) \cdot 2)+0=\mathrm{R}(x \oplus \underline{0})$
17: $\neg((\mathrm{R} x) \cdot 2)+0=\mathrm{R}(x \oplus \underline{0})$

