Proof of Theorem 214

The theorem to be proved is

 $Parity(x \cdot 2 + 1) = 1$

Suppose the theorem does not hold. Then, with the variables held fixed,

(H) $[[\neg (\operatorname{Parity}((x \cdot 2) + 1)) = (1)]]$

Special cases of the hypothesis and previous results:

- 0: \neg Parity $((x \cdot 2) + 1) = 1$ from H:x
- 1: $\operatorname{Parity}((x \cdot 2) + 1) = \operatorname{Parity}(1)$ from <u>212</u>;x;1
- 2: Parity1 = 1 from 208

Equality substitutions:

3:
$$\neg$$
 Parity $((x \cdot 2) + 1) =$ Parity $1 \lor Parity((x \cdot 2) + 1) = 1 \lor \neg Parity1 = 1$

Inferences:

- 4: $\neg \operatorname{Parity}((x \cdot 2) + 1) = \operatorname{Parity}1 \lor \neg \operatorname{Parity}1 = 1$ by 0: $\neg \operatorname{Parity}((x \cdot 2) + 1) = 1$ 3: $\neg \operatorname{Parity}((x \cdot 2) + 1) = \operatorname{Parity}1 \lor \operatorname{Parity}((x \cdot 2) + 1) = 1 \lor \neg \operatorname{Parity}1 = 1$
- 5: \neg Parity1 = 1 by 1: Parity($(x \cdot 2) + 1$) = Parity1 4: \neg Parity($(x \cdot 2) + 1$) = Parity1 $\lor \neg$ Parity1 = 1
- $6: QEA \qquad by$
 - 2: Parity1 = 1
 - 5: \neg Parity1 = 1