Proof of Theorem 214

The theorem to be proved is
$\operatorname{Parity}(x \cdot 2+1)=1$
Suppose the theorem does not hold. Then, with the variables held fixed,
(H) $\quad[[\neg(\operatorname{Parity}((x \cdot 2)+1))=(1)]]$

Special cases of the hypothesis and previous results:

0: $\quad \neg \operatorname{Parity}((x \cdot 2)+1)=1 \quad$ from $\quad \mathrm{H}: x$
1: $\quad \operatorname{Parity}((x \cdot 2)+1)=$ Parity $1 \quad$ from $\quad \underline{212} ; x ; 1$
2: \quad Parity $1=1 \quad$ from $\quad \underline{208}$

Equality substitutions:

3: $\neg \operatorname{Parity}((x \cdot 2)+1)=\operatorname{Parity} 1 \quad \vee \quad \operatorname{Parity}((x \cdot 2)+1)=1 \quad \vee \quad \neg \operatorname{Parity} 1=1$

Inferences:

4: $\quad \neg \operatorname{Parity}((x \cdot 2)+1)=\operatorname{Parity} 1 \quad \vee \quad \neg \operatorname{Parity} 1=1 \quad$ by 0: $\neg \operatorname{Parity}((x \cdot 2)+1)=1$
3: $\neg \operatorname{Parity}((x \cdot 2)+1)=\operatorname{Parity} 1 \quad \vee \quad \operatorname{Parity}((x \cdot 2)+1)=1 \quad \vee \quad \neg \operatorname{Parity} 1=1$
5: $\quad \neg$ Parity $1=1 \quad$ by
1: $\operatorname{Parity}((x \cdot 2)+1)=\operatorname{Parity} 1$
4: $\neg \operatorname{Parity}((x \cdot 2)+1)=$ Parity $1 \quad \vee \quad \neg$ Parity $1=1$
6: $Q E A$ by
2: $\operatorname{Parity} 1=1$
5: \neg Parity $1=1$

